Single Nucleotide Polymorphisms in the Obscurin Gene and Left Ventricular Hypertrabeculation (Noncompaction)

Josef Finsterer*

Krankenanstalt Rudolfstiftung, Vienna, Austria

*Corresponding author: Josef Finsterer, Krankenanstalt Rudolfstiftung, Postfach 20, 1180 Vienna, Austria. Tel: +4317116592085; Fax: +4314781711; Email: fipaps@yahoo.de


Received Date: 20 August, 2018; Accepted Date: 07 September, 2018; Published Date: 18 September, 2018

Keywords: Myopathy; Neuromuscular; Non-Compaction; Obscurin; Sarcomere

Letter to the Editor

In an interesting, recent article, Rowland et al. reported a case study of 4 patients carrying variants in the obscurin gene, of whom three presented with Left Ventricular Hypertrabeculation / noncompaction (LVHT) and one with dilated cardiomyopathy [1]. Obscurin plays a key role in myofibrillogenesis and cytoskeletal arrangement through interaction with titin, myomesmin, and obscurin-like-1 to generate a complex important for myofibrillar M-band function. Since the current perception is that contractility of the heart correlates with non-compaction, a relation between obscurin variants and LVHT is not surprising. We have the following comments and concerns.

We do not agree that the association between obscurin variants and LVHT is “strong” [1]. To demonstrate a “strong” association higher levels of evidence are required. Though LVHT has been reported in association with mutations and polymorphisms in >40 genes and with numerous chromosomal defects, a causal relation has never been proven [2]. Arguments against a causal relation are that LVHT may not occur in each generation, cardiac abnormalities associated with a given mutation can be highly variable within a family, that in families with a Neuromuscular Disorder (NMD), LVHT can be found only in a small number of patients, and that LVHT may not segregate with a specific mutation [3]. Did other first-degree relatives also carry the obscurin variants and did those carrying the obscurin variants also manifest with LVHT?

Arguments in favor of a causal relation, however, are that LVHT is more frequent in patients carrying certain genetic defects (e.g. DMPK, TAZ) compared with mutations in other genes [4] and that LVHT has familial occurrence.

We should be informed whether any of the mutation carriers also had developed myopathy since up to 80% of the patients with an NMD have LVHT and since obscurin mutations have been shown to cause myopathy, at least in mice [5]. Altogether, a causal relation between LVHT and mutations in sarcomeric proteins awaits confirmation and work-up for LVHT must include a neurological investigation and investigation of first degree relatives, even if they are asymptomatic. The reason why obscurin variants were associated with LVHT in 75% of the cases in Roland’s study and previously, awaits an explanation.

References