Article / Research Article

"Deconstructing Fast Growing Biomass: Grass, Agricultural Residues and Eucalyptus Bark"

Ikenna Anugwom1*,Mattias Hedenström1, Jyri-Pekka Mikkola1,2

1LUT RE-SOURCE Research Platform, School of Engineering Science, Lappeenranta University of Technology, Lappeenranta, Finland

2Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Finland

*Corresponding author: Ikenna Anugwom, LUT RE-SOURCE Research Platform, School of Engineering Science, Lappeenranta University of Technology, Lappeenranta, Finland. Email: ianugwom@abo.fi, ikenna.anugwom@lut.fi

Received Date: 09 May, 2018; Accepted Date: 05 June, 2018; Published Date: 12 June, 2018

1.       Abstract 

Lignocellulosic non-wood biomass was treated in highly diluted, aqueous Switchable Ionic Liquid (SIL) system derived from an alkanol amine (Monoethanol Amine, MEA), an organic superbase (1,8-diazabicyclo- [5.4.0]-undec-7-ene, DBU) and ‘switched’ by SO2. Herein the aim was to demonstrate the power of SIL treatment on non-wood biomass as a sustainable, environmentally friendly and cost-efficient approach. The primary fraction obtained upon hydrated SIL fractionation process contains hemicelluloses as well as cellulose-rich pulp with very low lignin content. Also, a simple model was used to describe the weight loss obtained for the treated wood. The chemical analysis results revealed that substantial removal of lignin occurred which is consistent with results of SIL treatment of wood. The endeavor was to assess the potential of this type of poorly explored biomass types as a source of potentially valuable raw materials. 


Scheme 1: The structure of the SIL, SO2 switched DBU MEASIL. Adapted from [1].



Figure 1: SEM images of the A) native Bamboo, B) Eucalyptus bark, C) Wheat straw. D, E, F depicts the corresponding SIL treated samples. (For all sample magnification:1KX, size 20µm).



Figure 2: FTIR spectra for A, native wheat straw and B SIL treated wheat straw.



Figure 3: FTIR spectra for native Eucalyptus bark (A) and SIL treated Eucalyptus bark (B).



Figure 4: FTIR spectra for, native Bamboo (A) and SIL treated Bamboo (B).




Figure 5: 13C CP/MAS spectra of untreated and SIL treated biomass samples. A-C Untreated Eucalyptus bark, Wheat straw and Bamboo, respectively. D-F Corresponding samples after SIL treatment.


Figure 6: FTIR of the recovered materials from spent SIL; Eucalyptus bark (A) Wheat Straw (B) and Bamboo (C). 





Component

Bark (wt-%)

Bamboo (wt-%)

Wheat straw (wt-%)

Native

SIL treated

Native

SIL treated

Native

SIL treated

Cellulose

47.7

89.2

44.7

73.7

40.7

66.7

Hemicellulose

24

7.3

24

9.1

30.1

10.8

Lignin

22.3

0.9

24.3

9

21

13

Extractives

1.5

0

1.4

0

1.8

0

Ash

1.1

0.85

1

0.8

1

0.9

Total

84.2

98.4

86.7

92.8

91.6

91.5

 

Table 1: Chemical compositions of the biomass before and after SIL treatment.

 

Materials

Weight loss biomass, %

Cellulose, g

Sugars, g*

Lignin, g

Sugar removal, %

Lignin removal, %

SIL treated bark Native bark

48 ± 3 N/A

13.9 ± 0.8 14.3 ±1.3

1.1 ± 0.4 3.0 ±1.2

0.1 ±0.7 7.2 ± 1.1

88  N/A

99 N/A

SIL treated bamboo Native bamboo

49 ± 1.9 N/A

11.3 ±0.6 13.4 ± 2

1.4 ±0.3 4.7 ±1.1

1.4 ±0.1 7.2 ±1

91 N/A

94 N/A

SIL treated wheat straw Native wheat straw

50 ± 1.5 N/A

10.0 ±0.9 12.2 ±1.6

1.6 ±0.7 5.4 ±1.5

2.0 ±0.3 9.0 ±1.2

91 N/A

94 N/A

*hemicelluloses are reported as sugars.

N/A: not analyzed

Table 2: Compositional analysis of the SIL treated biomass.

 

Sample

TCI (1377/2910   cm-1)

LOI (1423/898   cm-1)

Native Bamboo

0.47 ± 0.005

1.2 ± 0.003

SIL treated Bamboo

0.58 ± 0.003

0.53 ± 0.001

Native Eucalyptus Bark

1.6 ± 0.009

2.5 ± 0.002

SIL treated Eucalyptus Bark

0.7 ± 0.009

0.5± 0.001

Native Wheat straw

0.26 ± 0.009

1.12 ± 0.003

SIL treated Wheat straw

0.04 ± 0.01

0.69 ± 0.009

 

Table 3: IR crystallinity indexes data of the SIL treated and non-treated biomass.

1.       Eta V, Anugwom I, Virtanen P, Eränen K, Mäki-Arvela P, et al. (2013) Loop vs. batch reactor setups in the fractionation of birch chips using switchable ionic liquids. Chemical Engineering journal 238: 242-248.

2.       Anugwom I, Mäki-Arvela P, Virtanen P, Willför S, Sjöholm R, et al. (2011) Selective extraction of hemicellulose from spruce with Switchable Ionic liquids. Carbohydrate Polymers 87: 2005-2011.

3.       Anugwom I, Mäki-Arvela P, Virtanene P, Willför S, Damlin P, et al. (2012) Treating birch wood with a Switchable 1,8-diazabicyclo-[5.4.0]-undec-7-ene-glycerol Carbonate ionic liquid. Holzforschung 66: 809-815.

4.       Anugwom I, Eta V, Mäki-Arvela P, Virtanen P, Hummel M, et al. (2014) Novel Alkanol Amine-organic Superbase derived Switchable IonicLiquid(SIL) as a Delignification solvent for Birch (B. pendula). ChemSusChem.

5.       Anugwom I, Eta V, Mäki-Arvela P, Virtanen P, Hummel M, et al. (2014) Towards optimal selective fractionation for Nordic woody biomass using Novel Amine–Organic Superbase derived Switchable Ionic Liquid (SIL). Biomass and Bioenergy 70: 373-381.

6.       Eta V, Anugwom I, Virtanen P, Mäki-Arvela p, Mikkola JP (2014) Enhanced mass transfer upon switchable ionic liquid mediated wood fractionation. Industrial Crops and Products 55: 109-115.

7.       Jessop PG, Heldebrant DJ, Xiaowang L, Eckert CA, Liotta CL (2005) Reversible nonpolar to polar solvent. Nature 436 : 1102.

8.       Heldebrant DJ, Jessop PG, Thomas CA, Eckert CA, Liotta CL (2005)The Reaction of 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) with Carbon Dioxide. Journal of Organic Chemistry 70: 5335-5338.

9.       Wasserscheid P, Welton T(2006) Ionic liquids in synthesis. Wiley-VCH, Weinheim.

10.    Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids-A review. Industrial Crops and Products 32: 175-201.

11.    Tan SSY, MacFarlane DR, Upfar J, Edye LA, Doherty WOS, et al. (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chemistry 11: 339-345.

12.    Pu Y, Jiang N, Ragauskas A (2007) Ionic Liquid as a green solvent for lignin. Journal of Wood Chemistry and Technology 27: 23-33.

13.    Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, et al. (2009) Complete dissolution and partial delignification of wood in ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chemistry 11: 646-655.

14.    Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, et al. (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocelluloses materials with 1-n-butyl-3-methyl-imidazolium chloride. Green Chemistry 9: 63-69.

15.    Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. Journal of American Chemical Society 124: 4974-4975.

16.    Dale BE (2012) Process for the treatment of lignocellulosic biomass. in: U.S (Ed.) U.S.A.

17.    Holtzapple MTD, Lowery RR, JrGranda LL, C.B (2012) Methods and systems for pretreatment and processing of biomass. in: U.S. patent (Ed.).

18.    Galbe M, Guido Z (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46 : 70-78.

19.    Godliving YSM (2009) Recent advances in pretreatment of lignocellulosic waster and production of value added products. African journal of Biotechnology 8: 1398-1415.

20.    Soudham VP, Brandberg T, Mikkola JP, Larsson C ( 2014 ) Detoxification of acid pretreated spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation. Bioresource Technology 166: 559-565.

21.    Soudham VP, Raut DG, Anugwom I, Brandberg T, Larsson C, et al. (2015) Coupled Enzymatic Hydrolysis and Ethanol Fermentation: Ionic Liquid Pretreatment for Enhanced Yields. Biotechnol Biofuels 8: 135.

22.    Rinaldi R, Schuth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2: 1097-1107.

23.    Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R (2011) Ionic liquid-mediated formation of 5-hydroxymethylfurfural - a promising biomass-derived building block. Chemical Reviews 111: 397- 417.

24.    Binder JB, Blank JJ, Cefali AV, Raines RT (2010) Synthesis of furfural from xylose and xylan. ChemSusChem 3: 1268-1272.

25.    Silva SSD, Chandel AK (2012) D-Xylitol: Fermentative Production, Application and Commercialization, Springer, Berlin, Germany.

26.    Ragauskas AJB, Biddy GT, Chandra MJ, Chen R, Davis F, et al. (2014) Lignin Valorization: Improving Lignin Processing in Biorefinery. Science 344 : 1246843-12468410.

27.    Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S (2007) Argyropoulus, Dissolution of wood in ionic liquids. Journal of Agricultural and Food Chemistry 55: 9142-9148.

28.    Remsing RC, Swaloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3- methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chemical Communications 12: 1271-1273

29.    Lee SH, Doherty TV, Linhardt JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and Bioengineering 102: 1368-1376.

30.    Costa Lopes AMD, João KG, Rubik DF, Bogel-Łukasik E, Duarte LC, et al. (2013) Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation. Bioresources Technology 142 : 198-208.

31.    Magalhães da Silva SP, Da Costa Lopes AM, Roseiro LB, Bogel-Lukasik R (2013) Novel pre-treatment and fractionation method for lignocellulosic biomass using ionic liquids. RSC Advances 3: 16040-16050.

32.    Lan WL, Sun CF, RC (2011) Fractionation of bagasse into cellulose, hemicelluloses and lignin with ionic liquid treatment followed by alkaline extraction. Journal of Agricultural Food and Chemistry 59: 8691-8701.

33.    Yang Q, Shi J, Lin L, Zhuang J, Pang C, et al. (2012) Structural characterization of lignin in the process of cooking of cornstalk with solid alkali and active oxygen. J Agric Food Chem 60: 4656-4661.

34.    Demirbas A (2010) Biorefineries for Biomass Upgrading Facilities (Green Energy and Technology), Springer-Verlag, London.

35.    Fengel D, Wegener E (1984)Wood-Chemistry Ultrastructure Reaction, Walter de Gruyter, Berlin New York.

36.    Miranda I, Gominho J, Mirra I, Pereira H (2013) Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Industrial Crops and Products 41: 299-305.

37.    Bledzki AK, Mamun AA, Volk J (2010) Physical, Chemical and surface properties of wheat husk, rye husk and soft wood and their polypylene composite. Composite: Part A Applied Science and Manufacturing 41: 480-488.

38.    Mikkola JP, Anugwom I, Mäki-Arvela P, Virtanen P (2010) Dissolution and fractionation and processing of lignocellulosic materials and polymers with bicarbonate ionic solvents formed from amides, alcohols and carbon dioxide,  Åbo Akademi University/ForestCluster Oyj 2009-2010, Finland.

39.    Sundberg A, Sundberg K, Lillandt C, Holmbom B (1996) Determination of hemicelluloses and pectins in wood and pulp fibers by acid methanolysis and gas chromatography. Nordic Pulp and Paper Research Journal 4 : 216-226.

40.    Willför S, Pranovich A, Tamminen T, Puls J, Laine C, et al. (2009) Carbohydrate analysis of plant materials with uronic acid-containing polysaccharides-A comparison between different hydrolysis and subsequent chromatographic analytical techniques. Industrial Crops and Products 29: 571-580.

41.    Schwanninger M, Hinterstoisser B ( 2002) Klason Lignin: Modifications to Improve the Presicion of the standardized Determination. Holzforschung 56: 161-166.

42.    Yeh TF, Yamada T, Capanema E, Chang HM, Chiang V, et al. (2005) Rapid Screening of Wood Chemical Component Variations Using Transmittance Near-Infrared Spectroscopy. Journal of Agricultural and Food Chemistry 53: 3328-3332.

43.    Sluiter AH, Ruiz B, Scarlata R, Sluiter C, Templeton J, et al. (2011) Determination of structural carbohydrates and Lignin in biomass. Laboratory Analytical Procedure(LAP).

44.    Nelson MT, O'Connor RT (1964) Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part II. A New Infrared Ratio for Estimation of Crystallinity in Cellulose I and II. journal of Applied Polymer Science 8 : 1325-1341.

45.    Nelson ML, O'Connor RT (1964) Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part I. Spectra of Lattice Type I,II,III and of Amorphous Cellulose. Journal of Applied Polymer Science 8: 1311-1324.

46.    Socha AM, Parthasarathi R, Shi J, Pattathil S, Whyte D, et al. (2014) Efficient biomass pretreatment using ioinc liquids derived from lignin and hemicellulose. Proceedings of the National academy of sciences 111: E3587-E3595.

47.    Nawshad MZ, Mohamad M, Bustam A, Abdul Mutalib MIW, Rafiq CDS (2011) Dissolution and delignification of bamboo biomass using amino acid-based ionic liquid. Applied Biochemistry and Biotechnology 165: 998-1009.

48.    Clark J, Deswarte F (2008)Introduction to Chemicals from Biomass. Wiley, Chichester.

49.    Willför S, Sundberg A, Pranovich A, Holmbom B (2005) Polysaccharides in some industrially important hardwood species. Wood Science and Technology 39: 601-607.

50.    Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration and Biodegradation 53: 151-160.

51.    Hergbert HL (1960) Infrared spectra of lignin and related compounds. II. Conifer lignin and model compound. Journal of Organic Chemistry 25: 405-413.

52.    Bodîrlau R, Teaca CA, Spiridon I (2008) Chemical Modification of Beech wood: Effect on Thermal Stability. Bioresources 3: 789-800.

53.    Mohebby B (2008) Application of ATR Infrared Spectroscopy in Wood Acetylation. Journal Agricultural Science Technology 10: 253-259.

54.    Wang X, Ren H (2008) Comparative study of the photo-discoloration of moso bamboo (Phyllostachys pubescens Mazel) and two wood species. Applied Surface Science 254: 7029-7034.

55.    Jin Z, Matsumoto Y, Tange T , Akiyama T, Higuchi M, et al. (2005) Proof of the presence of guaiacyl–syringyl lignin in Selaginella tamariscina. Journal of Wood Science 51: 424-426.

56.    Colom X, Carrillo F, Nogués F, Garriga P (2003) Structural analysis of Photodegraded wood by means of FTIR spectroscopy. Polymer Degradation and Stability 80: 543-549.

57.    Carrillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibers 40: 2229-2234.

58.    Maunu SL (2002) NMR studies of wood and wood products, Progress in Nuclear Magnetic Resonance Spectroscopy 40 : 151-174.

Wikberg H, Maunu SL (2004) Characterization of thermally modified hard-and softwoods by 13C CPMAS NMR. Carbohydrate Polymers 58: 461-466

Citation: Anugwom I, Hedenström M, Mikkola JP (2018) Deconstructing Fast Growing Biomass: Grass, Agricultural Residues and Eucalyptus Bark. Curr Res Biopolymers: CRBP-109. DOI: 10.29011/CRBP-109. 000009