Multi Segment Upper Thoracic Fracture With Kyphoscoliotic Deformity Without Neurological Deficit-A Case Report

Krishnakumar Rangasamy*, Phanikiran S, Karunakaran S

Department of Spine Surgeon, Gleneagles Global Health City, Chennai, India

Corresponding author: Krishnakumar Rangasamy, Post Doctoral Fellowship In Spine Surgery, Consultant Spine Surgeon, Gleneagles Global Health City, Chennai, India. E-Mail: krishnaorth@gmail.com

Received Date: 29 November, 2016; Accepted Date: 03 February, 2017; Published Date: 10 February, 2017

Abstract

In Spinal trauma thoracolumbar fractures are common. Spinal cord is more vulnerable in upper thoracic spine. Hence minor degree of increased kyphosis or translation will lead to spinal cord injury and neurological damage. In literatures few cases were reported with one or two segments involvement without neurological deficit. Here we are reporting a 19 years old male with multi segment unstable upper thoracic vertebral fracture involving from T4 to T8 with kyphoscoliotic deformity without neurological deficit and underwent posterior stabilization procedure.

Introduction

In Spinal trauma thoracolumbar fractures are common and most of the complete neurological deficit occurs in thoracic fractures compare with cervical and lumbar fractures [1]. Thoracic vertebral column is divided into two region as upper thoracic [T1-T10] and thoraco lumbar[T10-L2]. Upper thoracic vertebral region is peculiar regarding anatomy and stability. Upper thoracic region is stronger construct than other region due to ribcage and costovertebral joints. These structures give 30% rigidity to upper thoracic region than other region [2,3].

Spinal cord is more vulnerable in upper thoracic spine due to smaller diameter of spinal canal and poor blood circulation to the cord in this region [4,5]. Hence minor degree of increased kyphosis or translation will lead to spinal cord injury and neurological damage.

Thoracic vertebral fractures without neurological deficit is rare. In literatures few cases were reported [6-22]. In all these cases pedicle and lamina fractures were reported and one or two segments involvement was present. Here we report a case with multi segment upper thoracic fracture without neurological deficit.

Case Report

19 year old male had road traffic accident while he riding a bike, bike was hit by a car. Patient was shifted to our institute on spine board. On examination patient complaining of pain upper back and right shoulder, GCS was 15 , haemodynamically stable and no neurological deficit. Radiological investigations revealed that patient had an displaced fracture clavicle on right side, comminuted scapula fracture on right side, haemo pneumo thorax in right side chest with no rib fracture and multiple vertebral fractures. Patient had right side transverse process fracture at C6 level, spinous process fracture at C7 level, right side pedicle, spinous process and body fracture at T4 level, bilateral pedicles fracture at T5 level, bilateral pedicle fracture and body fracture at T6 level, T7 and T8 vertebral body fractures with kyphoscoliotic deformity in upper thoracic spine and L1 transverse fracture on both side. MR shows no spinal cord damage (Figure 1).
Patient was completely evaluated for surgical procedure. Intercostal drain was put in right side chest. Patient was carefully positioned in prone position after anaesthesia with adequate support and padding. Through mid line incision T1 to T10 were exposed. Pedicle screw fixation was done T2,3 and T7,8,9 levels. There was loose fragments at T4 level due to lamina fracture which were removed and cord found to be normal and no obvious CSF leak.

Pedicle screws connected with contoured rods both sides. Wound closed in layers with drain. On third postoperative day there was a CSF leak in the drain so CSF drain was inserted at lumbar level and bed rest with head down position was advised. Intercostal drain was removed on fifth postoperative day. Wound drain was removed on sixth postoperative day and lumbar drain was removed on seventh postoperative day. Patient mobilized with TLO brace. Patient returned to his regular works in six weeks time and advised no strenuous activities for six months.

Discussion

Thoracic vertebral column is stiffer than other region need high energy trauma to produce fractures in normal adult. Most of these injuries are due to road traffic accidents and usually associated with other injuries. Upper thoracic spine fractures are prone for neurological damage due to smaller osseous ring and sparse blood supply to the spinal cord in the thoracic region.

Hyperextension injuries will cause the pedicle fractures which will separate the posterior arch from the remaining vertebral column and further compression will cause the failure of anterior and posterior columns. These complex hyperextension axial compression mechanisms are described in the various literature [14,15,23,24,25].

Auto decompression of spinal canal is the mechanism for preventing the neurological damage in these cases. Fractures of the pedicles and lamina are widening the spinal canal and anterior and middle column moving independently without moving the spinal cord (Figure 2).

Figure 2: Auto decompression due to fractures at T4 T5 and T6 level: A. MR Sagittal Section. B. MR Axial cut at T6 level.

Considering the unstable nature of the spinal column and to prevent the complications of conservative method like prolonged bed rest, failure of fusion, significant residual or progressive spinal deformity, chronic pain we decided to do internal fixation for this patient (Figure 3).

Figure 3: Postoperative radiographs: A. Antero posterior view. B. Lateral view.

Conclusion

Multi segment upper thoracic vertebral fractures without neurological deficit is very rare. Auto decompression due to pedicle fractures is the important mechanism for preventing neurological deficit. Internal fixation of the spine facilitating early return to regular activities.

References

