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Summary
Fluorescent protein-based techniques have revolutionized our understanding of cellular processes. Almost any biological 

process can be investigated in detail with high spatial and temporal resolution using differently colored fluorescent protein vari-
ants. However, often the development and usage of these sophisticated probes is restricted to a limited number of specialists. 
Further developments that aim to generate high performance FP-based probes, high efficient gen transfer methods and easy-to-
use powerful imaging systems are required to gain the usability of this enlightening technique. When these issues are solved 
multiple fluorescent protein-based tools will evolve from promises to fully mature probes that will more and more be used as 
matter of routine.

Introduction
One of the most ambitious approaches to understand the 

miracles of life is to visualize the structure and functional processes 
in intact living cells: the basic units of all living organisms. 
Cells consist of thousands of different molecules with distinct 
structure, characteristics and function. Different cell types have 
different morphologies and fulfill different essential functions 
in multicellular organisms. Cells are able to grow, replicate, 
differentiate, sense, respond, communicate, mature, age and, 
ultimately, die. Occasionally, cells become dysfunctional causing 
all kind of organ malfunctions as basis of disease. Understanding 
of how cells actually function, how they respond to changes in 
their microenvironment, and how cell functions and dysfunctions 
can be manipulated and normalized has been occupying scientists 
from different fields all over the world since decades.

Since approximately 20 years Fluorescent Protein (FP) -based 
tools allow looking at processes within cells with high spatial and 
temporal resolution[1-3]. Mainly based on the pioneering work of 
Osamu Shimomura, who identified and characterized the Green 
Fluorescent Protein (GFP) from the jellyfish Aequorea victoria, 
Martin Chalfie, who was the first expressing GFP successfully in 
bacteria and worms, and Roger Y. Tsien, who developed several 

colorful GFP variants and fluorescent probes, a new bright era 
of real time imaging of cell signaling events has been launched 
(reviewed in [3]). FPs equipped with distinct targeting sequences 
has become powerful tools to label cellular organelles and 
structures. Expression of organelle targeted FPs allows imaging 
of organelle dynamics [4,5], morphological changes of organelles 
and organelle-organelle interactions [5-7] in real time.

FPs fused to proteins of interest are frequently used to visualize 
subcellular distribution of proteins [8,9], protein translocations 
[8,10] and protein-protein interactions [8,11] in lifetime on the 
single cell level. Using such simple FP-based constructs numerous 
cellular phenomena such as the fission and fusion events of 
mitochondria [5,7], the assembly and disassembly of elements 
of the cytoskeleton [12], the Ca2+-induced oligomerization and 
translocation of distinct proteins [10,13] and many other cellular 
spectacles could be discovered, visualized, quantified and 
investigated with high precision and on the molecular level.

The Power of Genetically Encoded Fluorescent 
Probes (GEFPs)

A further sophisticated approach to use FPs is their 
implementation as fundamental components of so called Genetically 
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Encoded Fluorescent Probes (GEFPs) [14,15]. Usually, GEFPs 
are carefully designed chimeric constructs that are composed of a 
naturally-specific sensor domain fused to one or two FPs. Binding 
of the natural mediator (e.g. ion, protein, lipid or small molecules 
like ATP) to the respective specific sensor (binding) domain or the 
modification of the sensor domain by a biochemical process within 
the cell (e.g. (de-)phosphorylation, cleavage) affects the spectral 
properties of the attached FPs, which can be measured in real 
time using fluorescence spectroscopy or microscopy. Accordingly, 
changes of fluorescence intensities of FPs in GEFPs report 
intracellular changes of the concentration, kinetics and/or the 
activity of the analyte, which can be an ion [16-19], a metabolite 
[20-22], a substrate [23], or an enzyme [24-26], and eventually the 
activity status of certain cell signaling pathways. As the molecular 
processes of functioning of all different GEFPs is plagiarized from 
nature, every cell signaling event can be principally visualized 
with respective GEFPs. Hundreds of different GEFPs have been 
developed in order to answer specific questions and to discover 
complex phenomena in cell biology, biochemistry and medicine.

GEFPs composed of FPs with different spectral 
properties can be combined [27], or combined with small 
chemical fluorescent sensors [28] in order to record different 
signaling events simultaneously in single individual cells. Such 
simultaneous recordings of cellular process by distinct sensors 
with high resolution in time and location allow multidimensional 
acquisitions of cell signaling mechanisms. Accordingly, the usage 
of GEFPs undoubtedly enables to overcome previous limits and 
to explore new frontiers in biology research from different fields. 
Moreover, such experiments highly motivate researchers to ask 
new questions, design novel informative experiments, and develop 
further original GEFPs.

Improving the usability of GEFPs
However, the appropriate design, construction and effective 

usage of GEFPs are not so trivial [29]. Despite the enormous 
potential of GEFPs, there are only a limited number of specialist 
research groups that continuously develop and improve GEFPs. In 
addition, the usage of many sophisticated GEFPs is often restricted 
to those scientists who actually have invented the sensor. What 
are the main reasons that most of the already available and novel 
GEFPs are not used as a matter of routine in most laboratories 
by many scientists that perform research related to cell biology? 
What is actually required to increase the usability and distribution 
of GEFPs? GEFPs, as the name implies, are encoded by DNA and 
the respective genetic information has to be transferred effectively 
and without injury into the cells of interest. While there are several 
transfection procedures and transgenic technologies available that 
basically allow the insertion of DNA coding for GEFPs, most of 
these procedures are optimized for a limited number of cell lines, 
tissues and whole organisms.

Often scientists consider GEFPs as unusable tools as they 
have experienced huge difficulties in transfecting their cells of 
interest. Though the viral transfer has been found to overcome 
limitations of the gene transfer, in whole animals but also sensitive 
cells, the application of viral infection to achieve transfection with 
the sensor DNA/RNA is limited. An extension of the spectrum 
of effective transfection methods and transgenic technologies 
will certainly increase the applicability of GEFPs in future. The 
coding DNA for many GEFPs is under the control of a strong viral 
promotor so that high levels of GEFPs are produced within several 
hours after incorporation of the genetic information. However, 
high expression rates can induce cell stress and dysfunctions such 
as the unfolded protein response [30] and, hence, can limit the 
usability of GEFPs.

The availability of GEFPs under the control of promotors 
with different activities and inducible promotors would help in 
optimizing the actual concentration of sensors for different cell 
types. GEFPs for Ca2+ imaging has been continuously improved 
mainly by exchanging classical GFP variants with novel brighter, 
more photostable, and less pH-sensitive FPs [2,31,32]. Such 
developments results in more robust GEFPs with different spectral 
properties ranging from blue to red and considerably better signal 
to noise ratios. However, often the dynamic range of GEFPs is 
rather poor with only a maximal change in the fluorescence signal 
of 5-10%. Using such sensors appropriately requires trained users 
and optimized imaging setups. In order to expand utilization of 
these sophisticated tools to laboratories that are not specialists in 
fluorescence microscopy but highly benefit from using GEFPs in 
their research, affordable and easy-to-use devices with improved 
hardware and software components for automatic imaging and 
analyzes that are optimized for live cell imaging with GEFPs are 
urgently required.

Light emitting protein-based sensors have become 
indispensable tools in modern cell biology. They enable 
visualization of cell signaling with (almost) unlimited spatial 
and temporal resolution. More than all other methods GEFPs 
have taught us so much about the precision and beauty of cellular 
processes that maintain life. Future developments in the design and 
usage of GEFPs, along with achievements in molecular biology, 
physics, chemistry, microscopic techniques, and computer science, 
these probes will serve among researchers’ best tools in exploring 
life’s mysteries.
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