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Commentary
Extensive researches on controlled drug delivery systems 

and nanomedicines, such as lipid-based nanoparticles [1] and den-
drimers [2], have been carried out in past decades, although limited 
number of drugs have been approved [3]. To rationalize the devel-
opment of new drug delivery systems, a combination of experi-
mental and computational studies might be necessary. Examples of 
such investigations on lipid membranes and liposomes have been 
reviewed by A. Bunker et al. [4]. Due to the extremely expensive 
computations, the atomistic simulations of drug delivery systems 
are usually limited to hundreds of nanoseconds [5], during which 
the complicated transitions of the drug delivery process might not 
take place. Thus, a more promising approach to study this complex 
biophysical process is Coarse-Grained (CG) simulation. One most 
successful coarse-grained model for biomolecules is the MARTI-
NI force field [6] which has been widely used in investigating drug 
delivery systems. 

In MARTINI force field, four heavy atoms are treated as 
one bead that the overall biomolecular simulations have been sped 
up significantly, which allows people to study the mechanism of 
pore formation on lipid bilayers by PAMAM dendrimers [7]. And 
one very recent work [8] employs the SDK model [9] to study the 
peptide-based drug amphiphile filaments structure. These coarse-
grained models which group several heavy atoms and freeze the 
internal degrees of freedom of those grouped atoms allow re-
searchers to perform long simulations with simulation time up to 
microseconds. However, molecular dynamics simulations based 
on these coarse-grained models are still limited to a relatively 
small system, as a huge number of solvent molecules are modeled 
explicitly. Cooke et al. [10] developed a coarser model for lipid 
bilayers which only uses 3 beads to represent one lipid molecule 
and model the solvent implicitly (Figure 1(a)). Due to the degrees 
of freedom of the system have been reduced dramatically, large 
vesicles formation can be studied using this model

Figure 1(a-d): (a) Snapshots of lipids simulations in solu-
tion (left) and on surface (right) based on a tunable generic coarse-
grained model for bilayer membranes [10]. (b) A snapshot of dsD-
NA simulation based on 3SPN.2 force field [11]. (c) A bead-spring, 
united atom model for a dendrimer molecule [12]. (d) A coarse-
grained model for protein G generated by CafeMol software [13].

One big advantage of this generic model is that the param-
eters of this model can be varied that the aggregates of the lipid 
molecules can change from fluid to gel. So, this coarse-grained 
model can be mapped to different kinds of lipid membranes. 
Coarse-grained models of nucleic acids as well as proteins at simi-
lar coarse-graining levels have also been developed. Sambriski et 
al. [11] developed a mesoscopic 3SPN model which uses 3 beads 
to represent a single nucleotide (Figure 1(b)), allowing people to 
simulate long DNA molecules up to hundreds of base pairs. And 
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the mechanical properties of both dsDNA and ssDNA can be cor-
rectly predicted by the revision of this model. United atom model 
of dendrimer [12] which only considers the terminal groups and 
branching points as well as the coarse-grained model of protein 
[13] which models one amino acid as one bead are shown in 
(Figure1(c,d)) respectively. Note that the 3SPN model of nucleoid 
acids and various CG models of proteins can be combined into one 
forced field and have been implemented by a simulation package, 
CafeMol [14]. Moreover, C. Tan et al. [14] successfully obtained 
the dynamics of various proteins binding, sliding on DNA using 
this coarse-grained molecular dynamic simulation recently.

Therefore, a combination of coarse-grained models of lipids, 
nucleic acids, proteins, and dendrimers discussed above (Figure 
1) can be a coarser analogy of the MARTINI force field. Since 
the lipids model [10] can be tuned easily, the combination of the 
such coarse-grained models can be mapped to the MARTINI force 
field readily. And this combination of coarse-grained models of 
biomolecules can be used to simulate the big drug delivery system 
which even includes cytoplasm. Hence, the slower transitions in 
drug delivery process which cannot be obtained by atomistic mo-
lecular dynamics or MARTINI/SDK force fields might be revealed 
using this CG model.

Various drug delivery systems like Solid Lipid Nanoparti-
cles (SLN), liposomes, dendrimers can easily be implemented in 
this CG force field, for the lipids model can be modified to simu-
late lipid membranes in different phases. And because dsDNA, ss-
DNA, and RNA models are already included in the Cafemol pack-
age [13] and modeled nucleic acids can be conjugated to simulated 
dendrimer or encapsulated by lipids vesicles in the combined force 
field, this CG model can be used for gene delivery simulations too. 
Hopefully, this CG model can provide more useful information of 
drug delivery process which can help people design new drug de-
livery systems. As solvent molecules are considered implicitly in 
those CG models, many details of the systems are lost. In addition, 
since the electrostatic interactions among different biomolecules 
cannot be perfectly computed by Debye-Huckel theory which is 
being used in this CG model, the dynamics of those simulated 
biomolecules might be inaccurate. Therefore, to improve this com-
bined coarse-grained model its predictions should be verified by 
MARTINI CG simulations or atomistic molecular dynamics simu-
lations.
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