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Due to the rapid increase in aged population and/or traffic 
accident in many countries, the demand for replacing dysfunc-
tional hard tissues with artificial components such as hip and knee 
implants is increasing. For patients with extensive bone loss or de-
formities, standard off-the-shelf orthopaedic implants often do not 
provide an acceptable clinical solution. To successfully treat such 
patients, customized devices with the external geometry derived 
from the patient’s Computed Tomography (CT) or Magnetic Reso-
nance Imaging (MRI) data must be manufactured. Such patient-
specific devices have the potential to reduce surgery, recovery and 
rehabilitation times, restore correct joint kinetics, improve implant 
fixation and reduce the likelihood of revision surgery. These com-
bined factors reduce the patients’ pain and suffering and should 
result in a considerable reduction in hospitalization time and medi-
cal costs. Therefore, it is important to fabricate patient-specific im-
plants with high quality by reducing the risk of repeating surgeries 
and alleviating the pain of patients. 

Titanium alloys are receiving a great deal of attention in both 
medical and dental applications. In addition to the well-known CP-
Ti and Ti-6Al-4V alloy, many beta type titanium alloys compris-
ing non-toxic and non-allergic elements have been developed for 
the next generation of bone implant material [1-9]. However, the 
hard machinery and high cost of materials removal arising from 
the conventional manufacturing processes are the two main obsta-
cles of various potential applications of titanium alloys. Emerging 
advanced manufacturing technologies, Additive Manufacturing 
(AM) techniques, also known as 3D printing, are providing the 
ideal platform for the creation of these customized devices, where 
three dimensional complex parts could be realized by sequential 
production of two dimensional layers [10]. Thus, it facilitates the 
manufacture of parts with almost no geometric constraints and is 
economically feasible down to a batch size of one. So far, many 
titanium alloys components for implant have been successfully 
manufactured [9-23], where the 3D printed titanium alloys exhibit 
enhanced mechanical properties [9-12] and wear resistance prop-
erty [14], reasonably excellent corrosion resistance properties [21-
23]. The corresponding porous components, designed for further 
decreasing the stiffness of the implant materials to that of the bone, 

have shown very good fatigue properties [17-19]. The in vivo 
tests indicate that the porous titanium alloy scaffold components 
manufactured by 3D printing techniques could gain fast bone tis-
sue in growth and show outstanding osteointegration and better 
mechanical properties compared to the traditional Polyether Ether 
Ketone (PEEK) counterparts, thereby illustrating excellent poten-
tial for clinical implants [24,25]. On the other hand, 3D printing 
techniques are capable of manufacturing many real components 
such as acetabula cup [9], screw placements and the customized 
implants [9,26].

Usually, increasing the time in surgery means the increase 
in the risk of operation. Fortunately, 3D printing, as an emerging 
technique, makes it possible to reduce the surgery operation time. 
3D printing could be an accurate method to manufacture the im-
plants to replace fracture bone for specific patient. Many litera-
tures have demonstrated that, derived from the patient’s 3D data 
by CT or MRI examinations, patient-specific 3D printed implants 
match the defect area well with the satisfactory of the patient’s 
size and shape thereby enhancing the success of orthopedic sur-
gery [27,28] through optimizing the surgery strategy to reduce the 
intraoperative fracture prior to surgery and shortening the surgical 
time. These patient-specific implant surgeries are easily for operat-
ing, which reduce the surgery time and improve good healing for 
maxillary defect. It has been pointed out that the patient-specific 
titanium calcaneal prosthesis, which is ready for use only within 
several days from order to be produced [29]. 

Because the 3D printing technologies have exhibited many 
advantages in comparison to other traditional technologies, such as 
ability to manufacture patient-specific complex component, high 
material utilization, support of tissue growth and the unique cus-
tomized service for individual patient, 3D printing is considered to 
have a large potential market in medical fields. 
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