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Abstract
Metabolite-content (MC) refers to all small molecules which are the products or intermediates of metabolism within an 

organism. The metabolite-contents of plants which involve numerous secondary metabolites are highly related to their nutritional 
and medicinal features. Previous researches have confirmed that phylogeny-guided approaches have been seen as one of the time-
efficient and informative approaches to plant-based drug discovery. However, the phylogenetic reconstruction of plants is not 
determined conclusively from genomic sequence data. Here, we investigate the systematic value of metabolite-contents of plants, 
especially the predictive power of metabolite-content data in exploration of edible and medicinal properties for bioprospecting. 
In this study, we reconstructed the phylogenetic tree for a set of plants which are distributed in different genera and families by 
their metabolite-content data obtained from KNApSAcK Core DB. We used a network based approach to abstract structurally 
similar metabolites as features, and measure the phylogenetic distance by a binary method. We also reconstructed phylogenetic 
trees based on plastid markers rbcL, matK and ITS2 for the same set of plants, to investigate the predictive power of these two 
approaches, sequence- and MC-based approaches, in guiding the prediction of medicinal/edible properties.

Our results reveal that besides the genomic sequence data, metabolite-content data is also closely associated with medicinal 
and edible bioactivity of plants and can be used to explore the medicinal/edible properties in a different perspective from sequence-
based approach. Our study therefore provides a new approach for plant bioprospecting, and the predictive power of metabolite-
content data for medicinal/edible plants will also be improved with the improvement and completeness of the metabolite-content 
database.

Keywords: Chemosystematics; Metabolite-content; 
Phylogeny; Prediction; Secondary Metabolite

Introduction
Plants are the major contributors of natural products and 

are usually rich in nutritional or medicinal properties, which are 
attributed to the complex secondary metabolite constituents of them 
[1-3]. Plants are an important source of novel pharmacologically 
active compounds with many pharmaceutical drugs have been 
derived directly or indirectly from plants, and have played a 
central role in human health-care since ancient times [4-6]. Many 

pharmaceutical drugs are derived from plants that were first used in 
traditional systems of medicine [6]. According to the World Health 
Organization, about 25% of medicines are plant-derived [2].

Discoveries of novel molecules and advances in production 
of plant-based products have revived interest in natural product 
research [7,8]. The number of traditionally used plant species 
worldwide is estimated to be between 10,000 and 53,000; however, 
only a small proportion have been screened for biological activity 
[9-11], and the plants from some regions are less studied than 
others. Moreover, the potential of plants to yield new valuable 
drugs is under threat due to the alarming bio-diversity loss, with 
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recent estimates indicating that every fifth plant species on earth 
is threatened with extinction [12]. Therefore; there is an urgent 
need for a time-efficient and systematic approach for unlocking 
the potential of plants in drug discovery.

A correlation between phylogeny and biosynthetic pathways 
could offer a predictive approach enabling more efficient selection 
of plants for drug discovery. Following the assumption that plant-
derived chemicals are constrained to evolutionary plant lineages, 
phylogeny-guided approaches have been seen as one of the time-
efficient and informed approaches to plant-based drug discovery 
[13,14]. A series of studies have been conducted and verified that 
phylogeny is an efficient tool to facilitate drug discovery for diverse 
genera across different regions or cultures [13-18]. However, 
most of these studies focused on only a small cluster of genera, 
which limits its practical application. This approach also faces the 
limitation of incomplete sequence data. Moreover, phylogenetic 
distance correlated to feature similarity of species will also be 
invalid once beyond a certain threshold [19]. Therefore, a special 
perspective different from sequence-based phylogeny is valuable 
for understanding the evolution of bioactive features and facilitating 
the prediction and discovery of medicinal properties in plants. 

Besides molecular biology which is in the view of nucleotide 
sequence comparison, metabolite feature is also closely related 
to the evolution of pathways for both primary and secondary 
metabolites. Many researchers have begun to explore phylogenetic 
distance between species from the diversity of metabolite features, 
either alone or in combination with sequence features. Clemente 
et al. (2007) presented a method for assessing the structural 
similarity of metabolic pathways for several organisms and 
reconstructed phylogenies that were very similar to the National 
Center for Biotechnology Information (NCBI) taxonomy [20]. 
Borenstein et al. (2008) predicted the phylogenetic tree by 
comparing the “seed set” of metabolic networks [21]. Mano et al. 
(2010) considered the topology of pathways as chains and used 
a pathway-alignment method to classify species [22]. Chang et 
al. (2011) proposed an approach from the perspective of enzyme 
substrates and corresponding products in which each organism 
is represented as a vector of substrate-product pairs. The vectors 
were then compared to reconstruct a phylogenetic tree [23]. Ma et 
al. (2013) demonstrated the usefulness of the global alignment of 
multiple metabolic networks to infer the phylogenetic relationships 
between species [24]. A. A. Abdullah et al. (2015) classified 
microorganism species based on the volatile metabolites emitted 
by them, and the results have been well explained in terms of their 
pathogenicity [25]. However, most of these studies have focused 
on microorganisms such as archaea, and only a few studies have 
involved land plants and the bioactive compounds produced by them. 

The systemization of plants on the basis of their chemical 
constituents, which is also known as plant chemosystematics, 

could be helpful in solving taxonomical problems and exploring 
nutritional and medicinal properties from plants. Traditional 
chemosystematics of plants is based on the presence of selected 
metabolites. The incomplete data of metabolite constituents of 
plants limits its ability to solve taxonomical problems and discover 
new natural products or medicinal properties from plants [26, 27]. 
To perform a holistic review on the metabolite features of a species, 
we propose the concept of metabolite-content. Metabolite-content 
refers to all small molecules which are the products or intermediates 
of metabolism within an organism. It differs from metabolome in 
that the metabolite-content focuses on the qualitative collection of 
small metabolites and ignores the quantitative differences, which 
is instable with different parts and stages of one organism. 

The secondary metabolite constituents of a plant are highly 
related to its pathways which are constrained to evolutionary 
phylogeny, and also related to the bioactive compounds of the plant 
which determine the medicinal and nutritional features of it [26]. 
Comparative classification of plants based on their metabolite-
content-similarity could be used to explore the evolutionary 
and bioactive relation between them [28]. Here, we investigate 
the phylogenetic value of metabolite-content data, especially 
the predictive power of metabolite-content data in exploration 
of medicinal and edible plants for bioprospecting, using the 
KNApSAcK Core DB. 

The KNApSAcK Core DB is an extensive plant-metabolite 
relation database that can be applied in multifaceted researches 
of plants, such as identification of metabolites, construction of 
integrated databases, bioinformatics and systems biology [29-32], 
and can be considered an advanced source of metabolite-content 
data of plants. The KNApSAcK Core DB contains 111,199 species-
metabolite relationships that encompass 25,658 species and 50,899 
metabolites, and these numbers are still growing [30].

In this paper, we reconstructed the phylogenetic tree for a set 
of plants which are distributed in different genera and families by 
their metabolite-content data obtained from KNApSAcK Core DB. 
We used a network based approach to abstract structurally similar 
metabolite groups as features, and measure the phylogenetic 
distance by a binary method. We also reconstructed the 
phylogenetic tree based on common DNA barcodes for a subset of 
plants, to investigate the predictive power of these two approaches, 
sequence- and metabolite-content-based method, in guiding the 
prediction of medicinal/edible plants for bioprospecting.

Material and Methods
Dataset and Preliminaries

The input metabolite-content data are species-metabolite 
relationships obtained from the KNApSAcK Core DB, which is a 
part of the KNApSAcK Family DB [30]. The KNApSAcK Core 
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DB contains most of the published information about species-
metabolite relations, but this is obviously far from complete 
regarding plants and other living organisms. We removed the 
plants with inadequate plant-metabolite relations to guarantee that 
the amount of metabolite-content of selected plants is sufficient 
enough to reveal their interrelations. The KNApSAcK Core DB 
also provides MOL molecular structure files for the metabolite 
compounds. We used R package ChemmineR (v2.26.0) to generate 
atom pair fingerprints from molecular structure description files 
[33]. And these molecular fingerprints were used to measure the 
structural similarity for all the metabolite pairs. 

In this study, we also reconstructed phylogenetic tree for 
the same plant samples we used before based on three common 
DNA barcodes: two chloroplast barcodes rbcL and matK, and one 
nuclear barcode ITS2. The DNA sequence data are collected from 
GenBank [34], and certainly there is lack of data for some plants. 
Here we select the plants with both abundant metabolite-content 
(no less than 30 metabolites) and corresponding DNA barcode 
data as samples. There are 190 plants in total belong to 51 different 
families, with 172 plants in rbcL group, 165 plants in matK group 
and 160 plants in ITS2 group (Figure 1).

Figure 1: Overview of 190 plants included in rbcL, matK and ITS2 
sample groups.

Phylogenetic Hypothesis
In this study, we produce phylogenetic hypothesis for each 

groups of samples by compiling DNA sequence data from the 
plastid markers rbcL, matK and nuclear marker ITS2 respectively. 
The sequence data of rbcL, matK and ITS2 are aligned by Clustal 
X 2.0 to compensate the missing and gapping data. Bayesian 
analyses of each sample groups were performed with MrBayes 
v3.2 [35,36]. We produced Bayesian phylogenetic hypothesis using 

the  model (Parameters: lset NST = 6 RATES = 
gamma). For each group we perform the analysis with more than 
1,000,000 generations. The average standard deviation of the 
split frequencies (i.e., the average of all standard deviations of all 
observed splits between two independent analyses from different 
random trees) is down to <0.05 after the analysis is finished.

Clustering of Plants Based on Metabolite-Content 
Similarity

For classifying plants based on currently available metabolite-
content data, firstly we need an approach that can compensate 
for the limitations of missing data. Adjacent metabolites along a 
metabolic pathway are often related to similar substructures, and 
structurally similar metabolites are involved in the same or similar 
pathway. Therefore, plants that share highly structurally similar 
metabolites are likely to be within the same category and represent 
similar bioactivity. In this study, we linked plants to structurally 
similar metabolite groups instead of individual metabolites. 

We used the Tanimoto coefficient to measure the structural 
similarity between two metabolites and constructed a network 
of metabolites based on chemical structure similarity [37]. The 
Tanimoto coefficient between two metabolites 𝐴 and 𝐵 is defined 
as follows, which is the proportion of the features shared by two 
compounds divided by their union: 

The variable 𝐴𝐵 is the number of features common in both 
compounds, while 𝐴 and 𝐵 are the number of features that are 
related to the respective individual compounds. The Tanimoto 
coefficient has a range from 0 to 1 with higher values indicating 
greater similarity than lower ones. The Tanimoto coefficient can 
be calculated from molecular fingerprints using the R package 
ChemmineR [33]. Empirically, a Tanimoto coefficient value larger 
than 0.85 indicates that the compared compounds represent highly 
similar bioactive features [38]. We used 0.85 as the threshold to 
insert an edge between two metabolites and constructed a network 
of metabolites. For this network we applied a graph-clustering 
algorithm DPClus to generate metabolite groups that contains 
structurally similar compounds.

The DPClus algorithm is a graph-clustering algorithm 
that can be used to extract densely connected nodes as a cluster 
[39,40]. This algorithm can be applied to an undirected simple 
graph 𝐺 = (𝑁, 𝐸) that consists of a finite set of nodes 𝑁 and a finite 
set of edges 𝐸. Two important parameters, density 𝑑 and cluster 
property cp, are used in this algorithm. Density dk of any cluster 𝑘 
is the ratio of the number of edges present in the cluster (|𝐸|) to the 
maximum possible number of edges in the cluster (|𝐸|max). The 
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cluster property of a node 𝑛 with respect to cluster 𝑘 is represented 
as 

Where Nk is the number of nodes in 𝑘 and Enk is the total 
number of edges between 𝑛 and each node of 𝑘. 

By DPClus algorithm the metabolites were divided into 
many groups such that each group contains structurally similar 
compounds and can be treated as a distinctive pattern of structure. 
A plant is related to a metabolite group if it is related to any 
metabolite in the group. The original plant-metabolite relations 
are transformed into plant versus metabolite-group relations. We 
used such groups to measure the similarity between plants, thus 
reducing the effects of incomplete metabolite-content data. Each 
plant could be represented as a binary vector which is comprised 
of p variables with values 1 or 0 indicates presence or absence of 
each metabolite group. The metabolite-content-similarity of two 
plants was calculated by Simpson similarity coefficient as follow,

Here, 𝑎, 𝑏, and 𝑐 are the frequencies of the events 𝑥&y,

, and 𝑥& , respectively [41-43]. We transformed a similarity 
coefficient, 𝑠, to a distance coefficient, 𝑑, by the transformation 
𝑑 = 1−𝑠 and classified the plants by using Ward’s hierarchical 
clustering method using R. 

Thus for each of the three sample groups (172 samples with 
data of gene rbcL, 165 samples with data of gene matK, 160 samples 
with data of gene ITS2), we can reconstruct the phylogenetic 
trees by sequence data and metabolite-content data. To evaluate 
the power of the sequence data and the metabolite-content data in 
predicting medicinal/edible properties in the context of these three 
sample groups, we reconstructed phylogenetic trees by similarity 
of corresponding gene sequence and similarity of metabolite-
content data respectively, and performed comparative analysis for 
these two types of phylogenetic trees.

Phylogenetic and Statistical Analyses
We assessed the relationship of phylogeny with the 

medicinal/edible properties by calculating the phylogenetic 
signal of medicinal/edible plants. We investigated the strength 
in phylogenetic signal of medicinal/edible plants using the D 
statistic, a measure of phylogenetic signal, implemented by the 
function phylo.d in the R package caper [44,45]. D is calculated 
as follows,

Where  is the observed number of changes in the 
binary trait (medicinal/edible properties) across the ultrametric 

phylogeny, is the mean number of changes 
generated from 1000 random permutations of the species values at 

the tips of the phylogeny, and is the mean number 
of changes generated from 1000 simulations of the evolution for the 
character by a Brownian motion model of evolution with likelihood 
of change being specified as that which produces the same number 
of tip species with each character state as the observed pattern. 

The D statistic generates a value that usually lies between 
0 (indicates the trait is highly correlated with phylogeny) and 1 
(indicates the trait has evolved in essentially a random manner). 
Two p-values are calculated for the D statistic, p(D < 1) indicating 
whether the D metric is significantly smaller than 1, meaning that 
the trait (medicinal/edible properties) is not randomly distributed 
over the phylogeny. The second p-value, p(D > 0) indicates 
whether the D metric is significantly greater than 0, meaning that 
the trait (medicinal/edible properties) has a significantly different 
distribution on the phylogeny from the standard Brownian model 
of evolution. The phylogenetic signal is considered strong if p(D < 
1) < 0.05 and p(D > 0) > 0.05.

Evolutionary Patterns of Medicinal/Edible Properties
To narrow down the number of species chosen for an early 

stage of medicinal/edible plant discovery screening, we identified 
the position of phylogeny clustering for medicinal/edible 
properties. We highlighted such hot nodes (nodes that encompass 
significantly more medicinal/edible plants than the rest of the tree) 
by using the “nodesig” command in PHYLOCOM v4.2 for all of 
the phylogenetic trees [46]. This option was used to determine 
the position of phylogenetic clustering in a community sample 
by testing each node of the phylogenetic tree for overabundance 
in medicinal/edible terminal taxa distal to it. Observed patterns 
for each phylogenetic tree were compared with those for random 
samples of the same size per case, drawn from the phylogeny.

For these hot nodes in each of the phylogenetic trees we 
obtained, we recorded the percentage of the total and medicinal/
edible properties included in them. We compared the observed 
number of medicinal/edible plants encompassed in the hot nodes 
to the one expected to be found randomly in the percentage of 
the plants encompassed in the hot nodes; this was the gain in 
percentage of medicinal hits compared with random. 
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Results and Discussion

Plant name rbcL matK ITS2 Uses

Rosmarinus officinalis NC_027259.1 NC_027259.1 EU796893.1 M

Anthemis aciphylla BOISS. var.discoidea 
BOISS *FM957767.1 W

Acritopappus confertus *KP454449.1 W

Nardostachys chinensis *AF446950.1 AF446920.1 *AY236190.1 W

Valeriana officinalis L13934.1 *AY362532.1 EU796889.1 M

Mentha arvensis L. *HQ590183.1 *JN896123.1 AY656005.1 M

Solanum lycopersicum NC_007898.3 NC_007898.3 AB373816.1 E

Cyperus rotundus L. *AM999813.1 *KX369513.1 M

Zingiber officinale KM213122.1 KM213122.1 KC582868.1 M/E

Alphinia galanga *KY189086.1 AF478815.1 AF478715.1 M/E

Curcuma amada Roxb *KF981156.1 *KJ872380.1 AH009165.2 M/E

Curcuma aeruginosa *KX608611.1 AF478840.1 DQ438047.1 W

Pinus halepensis JN854197.1 JN854197.1 AF037007.1 L

Cedrus libani *HG765043.1 L

Cistus albidus *FJ225860.1 *DQ092975.1 *DQ092933.1 W

Melaleuca leucadendra L. *KX527090.1 *EU410106.1 M

Cistus creticus *FJ225862.1 *DQ092979.1 *DQ092937.1 W

Myrtus communis JQ730673.1 AY525136.2 GU984341.1 M

Leptospermum scoparium *HM850121.1 *KM065275.1 KM065050.1 M

Rhodiola rosea L. *KM360979.1 *KP114859.1 KF454616.1 M

Piper arboreum *GQ981830.1 EF056223.1 W

Piper fimbriulatum EF056254.1 W

Polygonum minus *FM883633.1 *JN896184.1 EU196895.1 M

Brassica hirta *HM849823.1 LC064389.1 FJ609733.1 E

Saussurea lappa *KX527328.1 *KX526536.1 KJ721545.1 M

Artemisia annua *KJ667633.1 *HM989754.1 KX219675.1 M

Artemisia capillaris NC_031400.1 NC_031400.1 KT965668.1 M

Olea europaea NC_013707.2 NC_013707.2 KJ188984.1 M/E

All of the sequence data were downloaded from GenBank 
(Table 1). It should be noted that not all samples have complete 
sequence data (Table 2). The ubiquitous missing and incomplete 
sequence data indicates that now the sequence data of plants 
included in GenBank are far from covering most of the plants, 
especially wild plants that not have been fully explored by human. 
The KNApSAcK species-metabolite relation database is also far 
from complete with a large amount of data fragments. However, 
the plants with abundant metabolite-content data included in 
KNApSAcK database are frequently inconsistent with plants with 
complete sequence data included in GenBank. The metabolite-

content data of plants in KNApSAcK could be seen as a necessary 
supplement of sequence data in GenBank for facilitating the 
analysis of evolutionary relations between plants and guiding the 
prediction of medicinal/edible plants since the plants covered by 
these two databases are complementary to each other. The plant 
samples selected in our research are performing both adequate 
sequence and metabolite-content data with acceptable data 
missing. Thus, we could investigate the effect of these two types 
of data in extracting medicinal/edible patterns from the same plant 
samples. We reconstructed the phylogenetic trees for the three 
sample groups by corresponding sequence data and metabolite-
content data respectively (Figure 2). 
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Juniperus phoenicea *HM024320.1 *HM024042.1 GU197870.1 W

Hesperis matronalis *KM360815.1 *HQ593319.1 AJ628314.1 L

Citrus sinensis DQ864733.1 DQ864733.1 AB456127.1 E

Citrus reticulata *AB505952.1 AB626773.1 AB456115.1 E

Citrus aurantium *AB505953.1 AB626798.1 AB456126.1 E

Citrus paradisi *AJ238407.1 *JN315360.1 AB456065.1 E

Citrus limon *AB505956.1 AB762353.1 AB456128.1 E

Citrus aurantifolia KJ865401.1 KJ865401.1 AB456118.1 M/E

Houttuynia cordata *AY572259.1 DQ212712.1 *AM777852.1 M/E

Helianthus annuus NC_007977.1 NC_007977.1 KF767534 E

Carthamus tinctorius KM207677.1 KM207677.1 KX108699.1 M

Hordeum vulgare KC912687.1 KC912687.1 KM252865.1 E

Triticum aestivum KJ592713.1 KJ592713.1 AJ301799.1 E

Zea mays NC_001666.2 NC_001666.2 *KJ474678.1 E

Oryza sativa KM103369.1 KM103369.1 KM252851.1 E

Allium cepa KM088013.1 KM088013.1 AM492188.1 E

Picea abies *EU364777.1 AB161012.1 AJ243167.1 T

Pinus sylvestris *JF701589.1 AB097781.1 AF037003.1 T

Brassica napus NC_016734.1 NC_016734.1 AB496975.1 P

Cucumis sativus DQ119058.1 DQ119058.1 AJ488213.1 E

Glycine max NC_007942.1 NC_007942.1 AJ011337.1 E

Phaseolus lunatus DQ445985.1 Y19456.1 E

Phaseolus vulgaris EU196765.1 EU196765.1 GU217644.1 E

Phaseolus coccineus *LT576851.1 DQ445966.1 Y19453.1 E

Pisum sativum KJ806203.1 KJ806203.1 AB107208.1 E

Lathyrus odoratus KJ850237.1 KJ850237.1 KX287478.1 L

Vicia faba KF042344.1 KF042344.1 *EU288904.1 E

Linum usitatissimum FJ169596.1 EU307117.1 T

Malus domestica *KM360872.1 AM042561.1 AF186484.1 E

Prunus cerasus *HQ235416.1 *FN668844.1 FJ899099.1 E

Prunus persica HQ336405.1 HQ336405.1 *KX674813.1 E

Prunus avium *HQ235394.1 *AM503828.1 HQ332169.1 E

Citrus unshiu *AB505946.1 AB626802.1 AB456117.1 E

Spinacia oleracea NC_002202.1 NC_002202.1 E

Camellia sinensis KC143082.1 KC143082.1 *EU579773.1 E

Pseudotsuga menziesii JN854170.1 JN854170.1 AF041353.1 T

Cassia fistula *U74195.1 *JQ301870.1 JQ301830.1 M

Colophospermum mopane *JX572425.1 AY386894.1 AY955788.1 T

Robinia pseudoacacia KJ468102.1 KJ468102.1 GU217616.1 L

Acacia mearnsii *KF532045.1 HM020723.1 KF048786.1 W
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Garcinia mangostana *JX664049.1 AJ509214.1 M/E

Garcinia dulcis JF738433.1 EU128468.1 W

Eriobotrya japonica KT808478.1 DQ860462.1 FJ449737.1 E

Aesculus hippocastanum *KM360616.1 EU687725.1 EU687637.1 P

Rheum sp. *EU840308.1 EU840469.1 W

Raphanus sativus NC_024469.1 NC_024469.1 AY746462.1 E

Armoracia lapathifolia *KM360651.1 LC064385.1 AF078032.1 E

Brassica oleracea KR233156.1 KR233156.1 GQ891877.1 E

Brassica rapa AY167977.1 AY541619.1 KF454313.1 E

Daucus carota DQ898156.1 DQ898156.1 AH003468.2 W

Asclepias curassavica *EU916742.1 *DQ026716.1 AM396884.1 L

Nicotiana tabacum NC_001879.2 NC_001879.2 *KP893959.1 M

Capsicum annuum KR078313.1 KR078313.1 *KP893996.1 E

Lycopersicon esculentum NC_007898.3 NC_007898.3 AJ300201.1 E

Cyperus rotundus *KJ773433.1 *KX369513.1 *KX675088.1 M

Humulus lupulus NC_028032.1 NC_028032.1 AB033891.1 M

Catharanthus roseus KC561139.1 KC561139.1 HQ130657.2 M

Petunia x hybrida *HM850249.1 *EF439018.1 L

Diospyros kaki NC_030789.1 NC_030789.1 AB175009.1 E

Clitoria ternatea *U74237.1 EU717427.1 AF467038.1 E

Sedum sarmentosum NC_023085.1 NC_023085.1 *GQ434462.1 M

Psidium guajava NC_033355.1 NC_033355.1 *AB354956.1 E

Phyllanthus emblica *AY765269.1 AY936594.1 *KU508339.1 M/E

Phellodendron amurense *AF066804.1 FJ716737.1 *KT972670.1 M

Epimedium sagittatum NC_029428.1 NC_029428.1 M

Rhodiola sachalinensis *KJ570585.1 *KJ570498.1 M

Sinocrassula indica *AF115679.1 M

Amorpha fruticosa KP126864.1 KP126864.1 GU217619.1 L

Glycyrrhiza uralensis *AB012126.1 AB280741.1 AB649775.1 M

Glycyrrhiza aspera *JQ669639.1 GQ246126.1 W

Glycyrrhiza glabra NC_024038.1 NC_024038.1 *KX675022.1 M/E

Glycyrrhiza inflata *AB012127.1 AB280743.1 JF778868.1 M

Erythrina variegata *KF496750.1 *KU587466.1 KJ716427.1 L

Sophora japonica *U74230.1 *HM049517.1 JQ676976.1 T

Medicago sativa KU321683.1 KU321683.1 Z99236.1 E

Trifolium pratense KP126856.1 KP126856.1 AF154620.1 M

Lespedeza homoloba KY174702.1 W

Glycyrrhiza pallidiflora *HM142228.1 EF685997.1 GQ246130.1 W

Dalbergia odorifera *KM510281.1 *KM521320.1 *GQ434362.1 T

Neorautanenia amboensis *KX213174.1 W



Citation: Liu K, Morita AH, Kanaya S, Atlaf-Ul-Amin M (2018) Metabolite-Content-Guided Prediction of Medicinal/Edible Properties in Plants for Bioprospecting. Curr 
Res Complement Altern Med: CRCAM-130. DOI:10.29011/CRCAM-130/100030

8 Volume 2018; Issue 01

Lupinus luteus NC_023090.1 NC_023090.1 AF007478.1 W

Lupinus albus KJ468099.1 KJ468099.1 AF007481.1 E

Derris scandens JX506621.1 JX506450.1 W

Euchresta japonica *AB127040.1 W

Euchresta formosana *AB127039.1 W

Sophora flavescens *AB127037.1 *HM049520.1 GU217622.1 M

Maackia amurensis *AB127041.1 AY386944.1 Z72352.1 L

Sophora secundiflora *Z70141.1 AF174638.1 W

Daphniphyllum oldhami KC737396.1 KC737244.1 JN040993.1 M

Annona purpurea *KM068886.1 *JQ586490.1 E

Annona cherimola NC_030166.1 NC_030166.1 E

Xylopia parviflora *JF265661.1 *JF271002.1 W

Cocculus laurifolius DC. *JN051677.1 AF542588.2 KM092304.1 W

Stephania cepharantha *JN051691.1 *GU373530.1 AY017400.1 W

Cocculus pendulus (Forsk.) Diels *FJ026478.1 W

Corydalis solida *KM360733.1 X85464.1 W

Papaver somniferum NC_029434.1 NC_029434.1 DQ364699.1 M

Rubia yunnanensis *KP098291.1 *KP098123.1 M

Taraxacum formosanum *AY862577.1 W

Alpinia blepharocalyx *KJ871690.1 AF478809.1 AF478709.1 W

Hibiscus taiwanensis *KX527103.1 *KX526698.1 W

Xylocarpus granatum *KF848252.1 *KJ784619.1 W

Acanthopanax senticosus JN637765.1 JN637765.1 *KX674996.1 M

Panax notoginseng KR021381.1 KR021381.1 KT380921.1 M

Panax ginseng KM067390.1 KM067390.1 *AB043872.1 M

Bupleurum rotundifolium AF481400.1 M

Bellis perennis *AY395530.1 KP175061.1 JN315918.1 M/E

Lonicera japonica NC_026839.1 NC_026839.1 EU240693.1 M

Solanum tuberosum KM489056.2 KM489056.2 E

Withania somnifera *FJ914179.1 *KR734871.1 JQ230981.1 M

Punica granatum *L10223.1 *JQ730680.1 *FM887008.1 E

Beta vulgaris KR230391.1 KR230391.1 E

Taxus wallichiana KX431996.1 KX431996.1 EF660573.1 M

Taxus cuspidata *DQ478793.1 AF228104.1 KU904438.1 P

Taxus brevifolia *AF249666.1 *EU078561.1 EF660600.1 M

Taxus baccata *AF456388.1 DQ478791.1 EF660599.1 M

Taxus chinensis *AY450855.1 AF228103.1 AF259300.1 M

Taxus mairei KJ123824.1 KJ123824.1 KU904440.1 M

Taxus yunnanensis *AY450857.1 M

Tabernaemontana coffeoides Boj. *GU973924.1 W
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Rauvolfia vomitoria *DQ660663.1 *DQ660538.1 W

Alstonia macrophylla *GU135289.1 *GU135060.1 T

Tephrosia purpurea *LT576862.1 *KF545845.1 P

Pongamia pinnata *AY289676.1 AF467493.1 L

Millettia pinnata NC_016708.2 NC_016708.2 JX506445.1 L

Psoralea corylifolia *JN114837.1 GU217608.1 M

Calophyllum inophyllum *HQ332016.1 *HQ331553.1 AJ312608.2 T

Broussonetia papyrifera *AF500347.1 *AF345326.1 AB604292.1 E

Morus alba KU981119.1 KU981119.1 AM041998.1 M/E

Artocarpus communis *AF500345.1 *KJ767846.1 E

Gymnadenia conopsea R.BR. *KJ451493.1 EF612530.1 Z94068.1 M

Bletilla striata NC_028422.1 NC_028422.1 KJ405419.1 M

Curcuma zedoaria *GU180515.1 AB047743.1 KJ803170.1 E

Taiwania cryptomerioides NC_016065.1 NC_016065.1 *AY916831.1 T

Chamaecyparis formosensis *AY380879.1 *FJ475234.1 T

Cryptomeria japonica NC_010548.1 NC_010548.1 AF387522.1 T

Angelica sinensis *JN704983.1 *GQ434227.1 JX138965.1 M

Lycium chinense *FJ914171.1 *AB036637.1 KC832461.1 M

Mandragora autumnalis *HQ216129.1 M

Curcuma domestica *KX608614.1 AB551931.1 KJ803148.1 M/E

Plantago major *KJ204386.1 *KJ593055.1 AB281165.1 M

Rehmannia glutinosa *FJ172725.1 *GQ434277.1 EU266023.1 M

Andrographis paniculata KF150644.2 KF150644.2 *KT898259.1 M

Scutellaria baicalensis NC_027262.1 NC_027262.1 JN853779.1 M

Magnolia denudata NC_018357.1 NC_018357.1 M

Magnolia officinalis NC_020316.1 NC_020316.1 JF755930.1 M

Aeschynanthus bracteatus AF349283.1 W

Angelica furcijuga KITAGAWA DQ278164.1 M/E

Zanthoxylum simulans *KT634182.1 EF489100.1 DQ016545.1 M

Severinia buxifolia *AF066806.1 AB762384.1 JX144180.1 W

Aristolochia elegans *AB060790.1 KM092119.1 L

Aristolochia heterophylla Hemsl *KU853431.1 *KU853368.1 M

Cannabis sativa NC_027223.1 NC_027223.1 KF454086.1 M

Citrus sudachi AB762337.1 AB456086.1 M

Salvia officinalis *AY570431.1 *JQ934074.1 FJ883522.1 M/E

Orthosiphon stamineus *KM658969.1 *AY506663.1 W

Murraya paniculata *AB505906.1 AB762389.1 KM092325.1 M

Belamcanda chinensis *AJ309694.1 AY596652.1 JF421476.1 M

Murraya euchrestifolia *JX144210.1 W

Ruta graveolens *U39281.2 EF489057.1 JQ230976.1 M/E
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Clausena excavata NC_032685.1 NC_032685.1 JX144189.1 W

Caesalpinia crista *KP094390.1 *EU361900.1 T

Table 1: GenBank ID (rbcL, matK, ITS2) and use information of sample plants. Economic uses of plants are represented as following abbreviations: 
E (edible), M (medicinal), L (landscaping,), T (timber), P (poisonous), W (wild plant). Some plants are both medicinal and edible and are annotated as 
M/E. (*Partial sequence data).

rbcL matK ITS2

Null 18 25 30

Complete Sequence 73 112 131

Partial Sequence 99 53 29

Table 2: The amount of complete and partial sequences data of rbcL, 
matK and ITS2 sample groups.

Figure 2: Phylogenetic trees and the hot nodes of medicinal/edible 
features for sequence- and MC-based approaches.

The uses information of plants was collected from published 
literature and online sources, and annotated as seven categories: 
edible plants, medicinal plants, medicinal/edible multi-useful 
plants, landscaping plants, timber plants, poisonous plants and 
wild plants (Table 3).

Edible Medici-
nal

Me-
dicinal/
Edible

Wild Land-
scaping Timber Poison-

ous

47 60 15 38 13 13 4

Table 3: The amount of plants in each category of uses.

We investigated the strength in phylogenetic signal of 
medicinal and edible categories for each phylogenetic tree we 
obtained using the D statistic (Table 4). We found that plants with 
medicinal/edible uses are significantly clustered in metabolite-
content-based phylogenetic trees of all the three sample groups. 
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Phylogenetic Tree Feature Estimate P(D<1) P(D>0)

rbcL group (sequence)
Edible 0.234~0.355 0 0.026~0.126

Medicinal 0.341~0.427 0 0.004~0.042

rbcL group (MC)
Edible -0.053~0.002 0 0.535~0.6

Medicinal 0.165~0.212 0 0.253~0.323

matK group (sequence)
Edible 0.197~0.274 0 0.093~0.184

Medicinal 0.433~0.519 0 0.001~0.022

matK group (MC)
Edible -0.206~-0.158 0 0.682~0.752

Medicinal -0.045~0.001 0 0.517~0.580

ITS2 group (sequence)
Edible 0.214~0.326 0 0.051~0.160

Medicinal 0.470~0.604 0~0.002 0~0.006

ITS2 group (MC)
Edible -0.118~-0.049 0 0.584~0.663

Medicinal 0.354-0.391 0~0.003 0.091~0.151

Table 4: Phylogenetic signal of medicinal/edible features in sequence-based and metabolite-content (MC) based trees.

Generally, the edible plants are more phylogenetically 
clustered than medicinal plants in all the three sample groups for 
both of the two approaches, with lower D estimate values and 
higher P(D>0) values. This suggests that comparing with edible 
plants, the distribution of medicinal plants across the lineages 
reveals some but less phylogenetic relations. The mechanism of 
medicinal plants is much subtler than edible plants and is related to 
the expression of small secondary metabolites which are sometimes 
randomly distributed along the clades. Moreover, the expressions 
of the secondary metabolites with medicinal bio-activity are more 
closely related to the overall metabolite features, i.e., metabolite-
contents of the plants. The plants with similar metabolite-contents 
tend to have similar medicinal features, and such observations are 
more obvious comparing with sequence-based approach in our 
experiments. Thus we might found more phylogenetic patterns by 
skipping gene data and comparing metabolite-content data directly. 
Considering the gene data available from GenBank is usually 
incomplete, the metabolite-content data implies great potential 
applications in predicting medicinal properties. 

As a tentative approach to narrow down the number of 
medicinal/edible plants selected for bioprospecting, we also 
identified the hot nodes that are significantly overrepresented by 
species of medicinal/edible uses (Table 5). We can observe that 
phylogenetic clustering was found for edible and medicinal plants in 
all of the tested phylogenetic trees except ITS2 sequence-based tree. 
The hot nodes in metabolite-content based phylogenetic trees tend to 
encompass more medicinal and edible plants than sequence-based 
phylogenetic trees. This suggests that comparing with sequence-
based approach it is more effective to explore phylogenetic patterns 
for medicinal and edible plants with the metabolite-content-based 
approach. We also compare the observed patterns for edible and 
medicinal plants with those for random samples of the same size 
drawn from the phylogenies. For these hot nodes in each of the 
tested phylogenetic trees, we recorded the percentage of edible 
and medicinal plants included in them. We compared the observed 
number of medicinal/edible plants encompassed in the hot nodes 
to the one expected to be found randomly in the percentage of 
the plants encompassed in the hot nodes, and this was the gain 
in percentage of medicinal/edible hits compared with random.

The rbcL- and matK-based trees also show moderate 
phylogenetic signal for medicinal/edible plants but much weaker 

than that in metabolite-content-based trees. The ITS2-based tree 
shows weak phylogenetic signal for both medicinal and edible plants.
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Phylogenetic tree Feature Total plants included 
(%)

M/E Hits
(%)

Gain in M/E hits 
(%) Co-included plants (hits)

rbcL group
(sequence)

Edible 30 (17.4%) 20 (43.5%) 150% Edible:20 (18)
Medicinal 46 (26.7%) 29 (50.9%) 90.60% Medicinal:27 (20)

rbcL group
(MC)

Edible 64 (37.2%) 37 (80.4%) 116.10% -

Medicinal 64 (37.2%) 32 (56.1%) 50.80% -

matK group
(sequence)

Edible 23 (13.9%) 21 (44.7%) 221.60% Edible:16 (16)

Medicinal 44 (26.7%) 23 (42.6%) 59.70% Medicinal:12 (10)

matK group
(MC)

Edible 32 (19.4%) 26 (55.3%) 185.10% -

Medicinal 34 (20.6%) 25 (46.3%) 124.70% -

ITS2 group
(sequence)

Edible 35 (21.9%) 27 (65.0%) 196.80% Edible:30 (25)
Medicinal 5 (3.1%) 5 (9.6%) 207.70% Medicinal:5 (5)

ITS2 group
(MC)

Edible 61 (38.1%) 35 (85.4%) 124.10% -
Medicinal 82 (51.2%) 35 (67.3%) 31.40% -

Table 5: The number and proportion of medicinal/edible plants within the clades of hot nodes. Total plants included (%): The number (percentage) of 
the total plants included in the hot nodes of medicinal/edible uses. M/E Hits (%): The number (percentage) of the medicinal/edible plants included in 
the hot nodes of medicinal/edible uses. Gain in M/E hits: the percentage of gain in medicinal/edible plants included in hot nodes, compare with what 
would be expected by chance. Co-included plants (hits): the number of (medicinal/edible hits) plants included in the hot nodes of medicinal/edible uses 
for both of the sequence- and MC-based phylogenetic trees.

The phylogenetic distribution of medicinal and edible 
plants encompassed by hot nodes also shows that the edible plants 
perform more converge trends and gains in percentage of hits. 
This indicates that the edible features of plants are more closely 
associated with the phylogeny as well as the metabolite-content 
similarity, and also suggests that there may be many unexplored 
medicinal properties within the plant kingdoms. Moreover, we 
also investigated the coincidence rates of the medicinal/edible 
plants encompassed by hot nodes between the sequence-based and 
metabolite-content-based phylogenetic trees. We found that there 
is not significantly coincidence of medicinal plants encompassed 
by hot nodes of these two types of phylogenetic trees. In other 
words; the medicinal patterns identified by metabolite-content-
based approach shows no significant similarity to the medicinal 
patterns identified by sequence-based approach. Our findings 
thus indicate that the metabolite-content-based approach might 
highlighted different group of medicinal plants with sequence-
based approach, and might reflect more unexplored medicinal 
potential not associated with the sequence-similarity.

As a meaningful attempt, we imported more plant-metabolite 
relation data (28123 plant-metabolite relations associated with 1047 
plants) and reconstructed phylogenetic tree by metabolite-content-
similarity (Figure 3). We selected plants containing at least 14 
metabolites to ensure data integrity. Plant uses information (edible 
or medicinal uses) was imported from KNApSAcK World Map 
DB. For the total 1047 tested plants, we found medicinal or edible 
uses information for 605 plants from World Map DB, with 543 
plants having medicinal values, 345 plants having edible values. 
There are totally 303 plants with both medicinal and edible values. 
The remaining 442 plants which are lack of uses information are 
regarded as wild plants from which we may explore new medicinal 
properties. The hot nodes for medicinal plants encompass 288 
plants, including 198 recorded medicinal plants. The remaining 90 
wild plants encompassed by the hot nodes should be given priority 
for future screening for overall medicinal bioactivity because these 
plants perform highly metabolite-content-similarity with other 198 
medicinal plants (Table 6).
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Figure 3: MC-based phylogenetic tree for 1047 plants, with the hot nodes of medicinal/edible Plants.

Panax pseudo-ginseng var.notoginseng; Panax ginseng C.A.Meyer; Trichosanthes tricuspidata; 
Bupleurumrotundifolium; Dracaena draco; Tribulus pentandrus; Solanum abutiloides; Silphium perfoliatum; 
Dioscorea spongiosa; Astragalus trojanus; Polygala japonica; Duranta repens; Ilex kudingcha; Kandelia 
candel; Baikiaeaplurijuga; Dicranopteris pedata; Camellia sinensis var. viridis; Cistus incanus; Rheum sp.; 
Vancouveria hexandra;Melicope triphylla; Chrysothamnus viscidiflorus; Hypericum sampsonii; Anaxagorea 
luzonensis A.GRAY;Rhamnus disperma; Podocarpus fasciculus; Chrysothamnus nauseosus; Platanus acerifolia; 
Pityrogrammatriangularis; Grevillea robusta; Podocarpus nivalis; Hypericum erectum Thunb.; Petunia x hybrid; 
Solanum spp.;Acacia dealbata; Ardisia colorata; Syzygium samarangense; Eugenia jambolana; Leptarrhena 
pyrolifolia;Nymphaea caerulea; Abies amabilis; Hyacinthus orientalis; Eustoma grandiflorum; Salvia splendens; 
Lathyrusodoratus; Rosa spp.; Rhododendron spp.; Empetrum nigrum; Vaccinium padifolium; Saussurea medusa; 
Crataegus pinnatifida; Betula nigra; Conocephalum conicum; Tephrosia toxicaria; Syzygium samarangense;Eugenia 
jambolana; Leptarrhena pyrolifolia; Nymphaea caerulea; Abies amabilis; Hyacinthus orientalis; Eustomagrandiflorum; 
Salvia splendens; Lathyrus odoratus; Rhododendron spp.; Empetrum nigrum; Vacciniumpadifolium; Saussurea 
medusa; Crataegus pinnatifida; Betula nigra; Conocephalum conicum; Tephrosia toxicaria; Euphorbia supina 
Rafin; Oricia suaveolens; Rhodobacter sphaeroides; Erwinia uredovora; Myxococcus xanthus;Streptomyces griseus; 
Rhodobacter capsulatus; Corbicula sandai; Corbicula japonica; Silurus asotus; Erysimum asperum; Cibotium 
glaucum; Gibberella fujikuroi; Marah macrocarpus; Pharbitis purpurea; Haplophyllumpatavinum; Niphogeton 
ternate; Chloranthus japonicus

Table 6: The 90 plants with high priority for future screening for overall medicinal bioactivity.
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Conclusion
Many researchers have proved that edible and medicinal 

plants were derived mostly from some lineages, and tend to be 
clustered rather than scattered in the phylogenetic tree. Our study 
reveals that besides the sequence data, metabolite-content data is 
also closely associated with medicinal and edible bioactivity of 
plants and can explore the medicinal/edible patterns in a different 
perspective from DNA sequence-based plant phylogeny.

We found that comparing with DNA sequence-based 
approach, our metabolite-content-based approach performs fair 
even better predictive power of medicinal properties. Moreover, the 
hot nodes of metabolite-content-based approach highlight different 
medicinal/edible patterns comparing with DNA-sequence-based 
approach. This implies that metabolite-content-based approach 
could reflect unexplored medicinal/edible properties not recovered 
by the sequence-based approach.

Since sequence-based plant bioprospecting is frequently 
confined to the lack of DNA sequence data, it is rational to 
utilize metabolite-content data to extent the limitation of 
sequence-based bioprospecting. Metabolite-content-based plant 
phylogeny reconstruction could provide a new perspective in 
plant bioprospecting. With the improvement of metabolite-content 
database and the integration of various plant pharmacopoeia, such 
MC-guided bioprospecting approach can be further accelerated, and 
the predictive power for medicinal/edible plants will also be improved 
with the completeness of metabolite-content database in future.
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