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Abstract
Number of studies have shown that tumor biology and resistance to treatment are closely connected to the existence of 

Cancer Stem Cells (CSCs). Sox2, a stem cell marker belongs to a family of transcription factors that are known to regulate gene 
expression in normal developmental processes. Sox2 is also pivotal for the maintenance of undifferentiated stem cells. Along with 
Sox2, other stem cell proteins such as CD133, Olig, and Oct4 are known to have clinical relevance as cancer markers, since they 
have prominent roles to play in the regulation of pluripotency. Proteins such as cMyc and β-catenin are known to be involved in 
the regulation of pluripotency. Atypical Teratoid/Rhabdoid Tumors (AT/RTs) are classified as aggressive CNS embryonal tumors 
with a dismal prognosis. A characteristic feature of AT/RTs is an aberration of chromosome 22, which results in a loss of the gene 
SMARCB1. In this study we utilized a flow cytometry to examine the expression of CSC markers in AT/RT cells. Analysis of 
the cell surface or intracellular expression of CSC markers indicated that Sox2, Oct3/4, cMyc, and β-catenin showed increased 
expression in AT/RT compared to the control neural stem cells. In order to measure the mRNA profile, qRT-PCR analyses were 
performed on these cell lines. The mRNA profile however did not always correlate with the CSC marker protein expression 
profile, but indicates that CSC markers in AT/RT can serve as potential biomarker.
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Introduction
In recent years, studies have shown that tumor biology and 

resistance to treatment are closely connected to the existence of 
Cancer Stem Cells (CSCs) [1,2]. CSC research currently suggests 
these cells have unique self-renewal capabilities thereby sustaining 
tumor growth, in contrast to the other tumor cells. Moreover, in 
several studies CSCs have been shown to have tumorigenic potential 
in addition to enhanced resistance mechanisms [3-7].  Sox2, a stem 
cell marker is a Sry-containing protein belonging to a family of 
transcription factors, which are known to regulate gene expression 
involved in normal developmental processes. Therefore, Sox2 is 
pivotal for early development and maintenance of undifferentiated 
embryonic stem cells [8]. SOX2 down regulation after embryogenesis 
is correlated with loss of pluripotency and self-renewal [9]. 

Recent studies suggest that SOX2 over expression has 
been associated with cancer development. In a study by Gangemi 
et al [10], knockout of SOX2 in a Glioma model caused loss of 
tumorigenicity. Along with Sox2, other stem cell proteins have 
been shown to have clinical relevance as cancer markers [11]. 

CD133 or Prominin is one such stem cell cancer marker, 
which is a 5-pass transmembrane glycoprotein located in the 
membrane of human hematopoietic cells and in neural progenitor 
cells [12,13]. CD133 has been shown to be associated with poor 
outcomes in brain tumor types such as astrocytoma [14,15], and 
glioblastoma [16]. Studies have shown a correlation between 
expression of CD133 and grade level of the brain tumor type [17]. 

Oct4 is another stem cell marker protein that is expressed in 
pluripotent embryonic stem cells, where it is a regulator of self-
renewal and differentiation [18-20]. It is expressed in several cancer 
types [18-21]. In an earlier study, knock-out of Oct4 in lung cancer 
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enhanced sensitivity towards chemotherapy and radiotherapy and 
also increased apoptotic activity [19]. Elevated levels of Oct4 
were found in both high-grade and low-grade astrocytomas in 41 
patients examined in a study [20].

Olig 1, Olig 2, and Olig 3 are basic helix-loop-helix 
transcriptional regulators. The expression of OLIG 1 and 2 is 
usually associated with early specification of the oligodendrocyte 
lineage [22,23], thus used as stem cell markers. OLIG 1, 2 are 
also essential for the maintenance of oligodendrocytes in the 
adult CNS. Studies have demonstrated high levels of OLIG1 
AND OLIG2 mRNA transcript expression in oligodendrogliomas 
[24,25]. Other studies demonstrated that high levels of Olig protein 
expression were present in most diffuse gliomas [26,27], such as 
oligodendrogliomas, astrocytomas and mixed gliomas [28,29]. 

Myc belongs to a family of helix-loop-helix/leucine zipper 
transcription factors including cMyc and N-Myc, and has been 
shown to play a role in embryonic stem cell maintenance in human 
small cell lung carcinomas [30]. Elevated Myc levels have been 
shown to interfere with early embryonic development [31-35]. 
cMyc has been known to be a frequently de-regulated oncogene in 
human cancers. Recently, studies have shown that as a transcription 
factor, cMyc alters the expression of many target genes including 
tumor suppressors and oncogenes. This leads to an acceleration of 
the intrinsic mutation rate and causes genomic instability commonly 
seen in tumor genotypes [36]. High cMyc levels were detected in 
Medullomyoblastoma, a subtype of primitive neuroectodermal 
brain tumors [37, 38].

Wnt/beta-catenin signaling is a crucial factor in the 
development of many cancers [39-42]. Studies have shown that 
aberrant Wnt/beta-catenin signaling plays an important role in 
atypical teratoid/rhabdoid tumors [39], and glioblastoma [43,44]. In 
meningiomas, studies have indicated that CTNNB1 is upregulated 
and localized to the nucleus [45]. 

Atypical Teratoid/Rhabdoid Tumors (AT/RTs) are classified 
as aggressive CNS embryonal tumors with a dismal prognosis. A 
characteristic feature of AT/RTs is an aberration of chromosome 
22, which results in a loss of the gene SMARCB1. An earlier 
study showed expression of CD133 in AT/RT by FACS analysis 
[2]. Studies done in AT/RT thus far, have not shown the protein 
expression of CSC markers such as, Sox2, Olig, and Oct by flow 
cytometry analyses. Expression of oncogenic markers such as 
cMyc and β-catenin by flow cytometry have not been shown in 
AT/RT. Therefore, we hypothesized that the above mentioned 
CSC markers and oncogenic markers will indicate higher protein 
expression levels in AT/RT compared to a control human neural 
stem cell line (H9). In the present study we examined the protein 
expression of these CSC and oncogenic markers in AT/RT cell lines 
and H9 cells by flow cytometry. The protein expression of these 
markers was also compared to mRNA expression of the markers 

by qRT-PCR analyses. The markers included in this study were, 
Sox2, CD133, Oct3/4, Olig2/3, cMyc, and β-catenin. 

Materials and Methods
ATRT Cell Line Establishment, Characterization and 
Maintenance

The AT/RT cells CHLA-04 was obtained from a 20-month 
male, and CHLA-05 from a 2-year male. Informed consent was 
obtained. Tissues were prepared as described 21 and initially cultured 
as Neurospheres in modified Neurobasal medium consisting of 
1:1 DMEM:F12, HEPES (15mM), Sodium Pyruvate (110mg/L), 
Sodium Bicarbonate (1.2g/L), 1xB27 (Invitrogen, cat#A1895601), 
EGF (20ng/mL, Invitrogen, cat# 10605HNAE5), bFGF (20ng/
mL, Invitrogen, cat#PMG0034). During first two weeks of growth 
gentamycin 25µg/ml was used. Passaging was at ratio of 1:2-3 with 
25% conditioned medium [22]. Loss of SMARCB1 was confirmed 
by immunohistochemistry, western blotting, qRT-PCR and G-band 
karyotyping. CHLA-266 and BT-12 were obtained from Children’s 
Oncology Group (COG) and were maintained in culture similar to 
the AT/RT cell lines mentioned earlier in this section.

Flow Cytometry
The AT/RT cell lines used for this study include, CHLA-

04, CHLA-05, BT-12, and CHLA-266. A commercially available 
human neural stem line, H9 was used as a control cell line. Staining 
for cell surface markers like CD133 (Miltenyi Biosciences, 
cat#130-080-801) was performed by washing the appropriate cell 
line in PBS. About 1x106 cells were stained with different amounts 
of CD133 and its isotype control. Staining for intracellular markers 
was done after fixing and permeabilizing the cells with Fix:Perm 
solution (Ebioscience, cat# 00-5523-00) for 30min at room 
temperature followed by the Perm buffer (Ebioscience, cat# 00-
5523-00). Appropriate amounts of antibodies and isotype controls 
were added to these fixed cells for 30min at room temperature. 
The antibodies used included: Sox2 (Ebiosciences, cat# 50-9811-
82), cMyc (R&D systems, cat# IC36964), Olig (R&D systems, 
cat# IC2230P), β-Catenin (Ebiosciences, cat# 12-2567-41), and 
Oct3/4 (Ebiosciences, cat# 53-S841-82). The cells were washed 
with PBS and analyzed using the BD Aria II (BD Bioscience) 
cytometer. Data analysis was done using FCS Express Research 
Edition software. 

qRT-PCR
The AT/RT cell lines used for this study include, CHLA-04, 

CHLA-05, BT-12, and CHLA-266, along with the control H9 cells. 
RNA was isolated (Qiagen, cat# 80204) and cDNA synthesized 
using Superscript II® cDNA kit (Life Technologies, cat# 18064-
014). For quantitative PCR, SYBr green I master mix (Roche, cat# 
04 707 516001) was used. One set of forward and reverse primers 
for the genes studied were used (detailed primer information in 

http://dev.biologists.org/content/132/5/885.long#ref-24
https://www.lifetechnologies.com/order/catalog/product/10605HNAE5?ICID=search-product
https://www.lifetechnologies.com/order/catalog/product/PMG0034?ICID=search-product
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Supplementary Methods). Quantitative PCR was run on a real-time PCR system (Roche Light Cycler™ 480 system). Each sample was 
run in triplicate and Roche software was used to analyze data. The expression of each gene was compared to expression in H9 cells and 
normalized against GAPDH. Expression was calculated as fold changes using the standard ∆Cp value calculation.

Results
The ATRT cell lines, CHLA-04, CHLA-05, CHLA-266, and BT-12, were used to study the protein and mRNA expression of each 

of the CSC and oncogenic markers. The protein and mRNA expression of each marker in ATRT cell lines was compared to expression in 
the H9 human neural stem cell line. In all Figures, Figure I shows either cell surface or intracellular expression of various markers and 
II) shows the corresponding mRNA expression for these markers, in each cell line studied. For each cell line shown line graphs show, 
isotype control (black) with the plot marked as isotype control showing the corresponding cell population, and protein expression (red) 
with the plot marked as antibody showing the corresponding cell population.

Figure 1: Expression of Sox2 protein by flow cytometry (I), and SOX2 mRNA by qRT-PCR (II). (IA) For H9 control neural stem cells, the histogram 
shows isotype control (black) with the dot plot marked as isotype control showing the corresponding cell population. Sox2 protein expression is shown 
in the histogram (red) with the dot plot marked as antibody showing the corresponding cell population. Similarly, Sox2 expression is shown for CHLA-
04 (IB), CHLA-05 (IC), CHLA-266 (ID), and BT-12 (IE). (II) Real-time qRT-PCR analyses using cell lines to investigate differential expression of the 
SOX2 gene (shown on the X-axis). Differential expression of these genes was calculated as a fold change compared with H9 cells (Y-axis). The dashed 
lines above a bar indicate a fold change >2. 

The stem cell factor, Sox2 was first studied as a marker for ATRT (Figure 1). Compared to isotype controls, CHLA-05 (Figure 
1-IC) shows the highest Sox2 protein expression at 77.94%, followed by H9 (Figure1-IA) at 40.22%, and CHLA-04 (Figure 1-IB) at 
63.21%. CHLA-266 (Figure 1-ID) shows an expression of 22.51%, while BT-12 (Figure 1-Ie) shows an expression of 15.76%. However, 
compared to SOX2 mRNA expression in the H9 sample, CHLA-04 and CHLA-05 do not show a significantly higher fold change in 
expression (Figure 1-Ii).

Figure 2 shows results of the Olig2/3 stem cell marker. Compared to isotype controls, H9 shows the highest Olig 2/3 expression 
at 46.10% (Figure 2-IA), followed by CHLA-04 at 16.32% (Figure 2-IB). CHLA-05 (Figure 2-IC) shows an expression of 0%, CHLA-
266 (Figure 2-ID) shows an expression of 6.75%, and BT-12 shows an expression of 0.31% (Figure 2-IE). Compared to OLIG mRNA 
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expression in H9 cells (Figure 2-II), the mRNA fold expression of OLIG is significantly higher only in CHLA-266 (above 2-fold).  This 
does not correlate with protein expression.  Oct3/4 was the next stem cell factor studied in the AT/RT cell lines. Compared to isotype 
controls, Oct3/4 expression is highest in CHLA-05 at 71.41% (Figure 3-IC), followed by H9 at 46.79% (Figure 3-IA) and CHLA-04 
at 34.70% (Figure 3-IB). CHLA-266 shows an Oct3/4 expression of 19.64% (Figure 3-ID), while BT-12 shows an Oct3/4 expression 
of 13.66% (Figure 3-IE). Interestingly, the mRNA fold expression of OCT3/4 is significantly higher only in CHLA-266 (above 2-fold) 
compared to the expression in control H9 cells (Figure 3-II). These results do not correlate with the protein results.

Figure 2: Expression of Olig2/3 protein by flow cytometry (I), and OLIG mRNA by qRT-PCR (II). (IA) For H9 control neural stem cells, the histogram 
shows isotype control (black) with the dot plot marked as isotype control showing the corresponding cell population. Olig2/3 protein expression is 
shown in the histogram (red) with the dot plot marked as antibody showing the corresponding cell population. Similarly, Olig2/3 expression is shown 
for CHLA-04 (IB), CHLA-05 (IC), CHLA-266 (ID), and BT-12 (IE). (II) Real-time qRT-PCR analyses using cell lines to investigate differential 
expression of the OLIG gene (shown on the X-axis). Differential expression of these genes was calculated as a fold change compared with H9 cells 
(Y-axis). The dashed lines above a bar indicate a fold change >2. 

The stem cell marker, CD133 was studied in the ATRT cell lines. Compared to isotype controls, CD133 expression is highest in 
H9 cells at 70.11% (Figure 4-IA), followed by CHLA-04 at 59.67% (Figure 4-IB) and CHLA-05 at 29.03% (Figure 4-IC). CHLA-266 
shows CD133 expression of 14.37% (Figure 3-ID), while BT-12 shows CD133 expression of 22.38% (Figure 3-IE). The mRNA fold 
expression of CD133 in AT/RT cell lines is not significantly higher than expression in H9 cells (Figure 4-II). 
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Figure 3: Expression of Oct3/4 protein by flow cytometry (I), and OCT mRNA by qRT-PCR (II). (IA) For H9 control neural stem cells, the histogram 
shows isotype control (black) with the dot plot marked as isotype control showing the corresponding cell population. Oct3/4 protein expression is 
shown in the histogram (red) with the dot plot marked as antibody showing the corresponding cell population. Similarly, Oct3/4 expression is shown for 
CHLA-04 (IB), CHLA-05 (IC), CHLA-266 (ID), and BT-12 (IE). (II) Real-time qRT-PCR analyses using cell lines to investigate differential expression 
of the OCT gene (shown on the X-axis). Differential expression of these genes was calculated as a fold change compared with H9 cells (Y-axis). The 
dashed lines above a bar indicate a fold change >2. 
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Figure 4: Expression of CD133 protein by flow cytometry (I), and CD133 mRNA by qRT-PCR (II). (IA) For H9 control neural stem cells, the histogram 
shows isotype control (black) with the dot plot marked as isotype control showing the corresponding cell population. CD133 protein expression is 
shown in the histogram (red) with the dot plot marked as antibody showing the corresponding cell population. Similarly, CD133 expression is shown 
for CHLA-04 (IB), CHLA-05 (IC), CHLA-266 (ID), and BT-12 (ID). (II) Real-time qRT-PCR analyses using cell lines to investigate differential 
expression of the CD133 gene (shown on the X-axis). Differential expression of these genes was calculated as a fold change compared with H9 cells 
(Y-axis). The dashed lines above a bar indicate a fold change >2. 
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Expression of oncogenic markers such as, cMyc and β-catenin were also studied in AT/RT. Compared to isotype controls, cMyc 
expression is highest in CHLA-04 cells at 62.27% (Figure 5-IB), followed by CHLA-05 at 54.22% (Figure 5-IC) and H9 at 45.57% 
(Figure 4-IA). CHLA-266 shows cMyc expression of 17.03% (Figure 3-ID), while BT-12 shows cMyc expression of 35.22% (Figure 
3-IE). The mRNA fold expression of cMYC is significantly higher (above 2-fold) in BT-12, CHLA-266 and CHLA-04 compared to the 
expression in H9 cells (Figure 5-II). Compared to isotype controls, β-catenin expression is highest in CHLA-05 cells at 72.41% (Figure 
6-IC), followed by CHLA-04 at 70.15% (Figure 6-IB) and H9 at 25.27% (Figure 5-IA). CHLA-266 shows β-catenin expression of 
11.31% (Figure 3-ID), while BT-12 shows β-catenin expression of 0.14% (Figure 3-IE). The mRNA fold expression of CTNNB1 in AT/
RT cells is not significantly higher that expression in H9 cells (Figure 6-II). 

Figure 5: Expression of cMyc protein by flow cytometry (I), and cMYC mRNA by qRT-PCR (II). (IA) For H9 control neural stem cells, the histogram 
shows isotype control (black) with the dot plot marked as isotype control showing the corresponding cell population. cMyc protein expression is shown 
in the histogram (red) with the dot plot marked as antibody showing the corresponding cell population. Similarly, cMyc expression is shown for CHLA-
04 (IB), CHLA-05 (IC), CHLA-266 (ID), and BT-12 (ID). (II) Real-time qRT-PCR analyses using cell lines to investigate differential expression of the 
cMYC gene (shown on the X-axis). Differential expression of these genes was calculated as a fold change compared with H9 cells (Y-axis). The dashed 
lines above a bar indicate a fold change >2. 
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Figure 6: Expression of β-catenin protein by flow cytometry (I), and CTNNB1 mRNA by qRT-PCR (II). (IA) For H9 control neural stem cells, the 
histogram shows isotype control (black) with the dot plot marked as isotype control showing the corresponding cell population. β-catenin protein 
expression is shown in the histogram (red) with the dot plot marked as antibody showing the corresponding cell population. Similarly, β-catenin 
expression is shown for CHLA-04 (IB), CHLA-05 (IC), CHLA-266 (ID), and BT-12 (ID). (II) Real-time qRT-PCR analyses using cell lines to investigate 
differential expression of the CTNNB1 gene (shown on the X-axis). Differential expression of these genes was calculated as a fold change compared 
with H9 cells (Y-axis). The dashed lines above a bar indicate a fold change >2. 
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Discussion
AT/RTs are CNS tumors where information about the tumor 

originating cells is unclear. In this study, expression of some of the 
commonly studied neural stem cell markers was examined in AT/
RT. Oct3/4, Sox2, and Nanog have been shown to function as core 
transcription factors in maintaining pluripotency [46,47]. Oct3/4 
and Sox2 were identified as being essential for the generation of 
induced pluripotent cells in a study by Takahashi and Yamanaka 
[48]. In the same study, c-Myc and Klf4 were identified as essential 
factors to induce pluripotency. Another study indicated that c-Myc 
protein may induce global histone acetylation [49], thus allowing 
Oct3/4 and Sox2 to bind to their specific target loci. 

The AT/RT cells, CHLA-04 and CHLA-05 show the highest 
protein expression of Sox2 more than the percent expression 
seen in neural stem cell controls. Also, the protein expression 
of Sox2 in all AT/RT cells correlates with the protein expression 
of Oct3/4 where CHLA-04 and CHLA-05 show higher Oct3/4 
expression than the neural stem cells followed by CHLA-266 and 
BT-12. Similarly, the protein expression profile of cMyc in AT/
RT cells correlates with the expression of Sox2 and Oct3/4 where 
CHLA-04 and CHLA-05 show higher Oct3/4 expression than 
the neural stem cells followed by CHLA-266 and BT-12. These 
protein expression results indicate that a majority of the AT/RT cell 
population may be pluripotent cells. Protein expression of Olig2/3 
is high only in CHLA-04 compared to the neural stem cells. Olig 
is a lineage marker for oligodendrocytes [22,23], and the results 
with AT/RT cells seem to indicate that these cells may not have 
an abundance of oligodendrocyte lineage cells. Interestingly, the 
mRNA profile of CD133, OCT3/4, OLIG, CTNNB1, and cMYC 
in ATRT cells does not correlate with the corresponding protein 
profile. This discrepancy between the mRNA and protein for these 
CSC markers needs to be analyzed further. 

Activation of Wnt/β-catenin signaling has been linked to 
maintenance of the pluripotent state in human and mouse ESCs 
[50]. Studies by Kelly et al. [51] have shown that β-catenin can 
form a complex with and modulate the activity of Oct-4, thus 
having an influence on regulating the differentiation of mouse 
ESCs. In another study [52] Wnt/β-catenin signaling was shown 
to be repressed by Oct4 in the context of self-renewing human 
ESCs and de-repressed when human ESCs differentiate. In 
CHLA-04, CHLA-05, and CHLA-266, elevated β-catenin 
protein levels correlate with elevated Oct3/4 protein levels. This 
is further indication that AT/RT cells may be in a self-renewing 
undifferentiated state. 

Conclusion
Stem cells protein expressed on cell surface and intracellularly 

can serve as potential biomarker in ATRT
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