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Abstract
Malaria disease continues to be one a major public health concern in Africa. Around 3.2 billion persons are still at risk to 

contract malaria in the World and, in 2015. Approximately 80% of deaths caused by malaria are concentrated in only 15 countries, 
mostly in Africa. These high-burden countries have achieved lower than average reduction in malaria incidence and mortality and 
Mozambique is among them. Malaria eradication is therefore, one of Mozambique’s main priorities. Few studies on malaria were 
carried in Chimoio and there is no malaria map risk of the area. This map is important in order to identify areas at risk for Public 
Precision Health approach. By using GIS-based spatial modelling techniques, the research goal of this article is to map and model 
malaria risk areas, using climate, socio-demographic and clinic variables in Chimoio, Mozambique.

Methods: A 30m×30m Land sat image, ArcGis 10.2 and, BioclimData were used. A conceptual model for spatial problems was 
used to create the final risk Map. The risks factors used were: mean temperature, precipitation, altitude, slope, distance to water 
bodies, distance to roads, NDVI, land use and land cover, malaria prevalence and, population density. Layers were created in a 
raster dataset. For the class values comparison between layers, numeric values to classes within numeric each map layers were 
assigned, giving them the same importance. Ranks were performed to the input dataset with different weights according to their 
suitability. The combination of the reclassified outputs of the data was performed. 

Results: Chimoio presents 96% with moderate risk and 4% with high-risk areas. The map depicts that the central and south-west 
“Bairros” namely Centro Hipico, Trangapsso, Bairro 5 and 1o de Maio have a high-risk, while the rest of the “Bairros” having a 
moderate risk of malaria.

Conclusion: All the Chimoio population is at risk to contract malaria Precise estimation of malaria risk has important implications 
in Precision Public Health, and the planning of effective control measures such as right time and place to spray for vector combat, 
distribution of bed nets and other control measures. 
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Background
Malaria is an ancient disease and is a major public health 

concern in Africa. About 3.2 billion people remain at risk of 
malaria in the World. It was reported that in 2015, there were 214 

million new cases of malaria that resulted in 428000 deaths. Most 
cases occurred in the WHO African Region (88%), followed by the 
South-East Region (10%) and the WHO Eastern Mediterranean 
Region (2%). Approximately 80% occur in just 15 countries, 
mainly in Africa. Combined together, these high-burden countries 
recorded a slower than average reduction in malaria incidence and 
mortality [1] and Mozambique is among them.

http://doi.org/10.29011/JEES-151. 100051 
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Mozambique was recently ranked fifth in Africa for the 
number of malaria cases [2]. The disease is a major cause of 
morbidity and mortality, especially among children [3], and the 
entire population is at risk of contracting the disease since is 
endemic with seasonal peaks during and after the rainy season, 
which is between November and March [4]. 

To eradicate malaria is, therefore, one of Mozambique’s main 
priorities and is recognized as critical to achieve the 2030 Agenda 
for Sustainable Development [5]. The environment and climate 
conditions highly influence the malaria transmission, although, 
their effect is often not linear. It is not expected that the malaria-
climate relation keeps the same over areas covered by different 
agro-ecological zones [6] thus resources for control have to be 
spread in time and space. An estimated 80 to 90% of malaria cases 
are related to environmental factors [7-9]. The level of prevalence 
can be predicted based on the established relationship between 
malaria prevalence and environmental data.

Temperature affects the development of malaria and below 
18oC and over 40oC the parasite does not develop [10,11]. The 
highest proportion of vectors surviving the incubation period is 
observed at temperatures between 28° - 32°C [12]. 

Precipitation is another key player in malaria occurrence; 
increased precipitation can provide more breeding sites for 
mosquitoes, but, excess rain can also destroy breeding sites 
[13,14]. There is an influence of altitude in the distribution and 
spread of malaria indirectly, via its effect on temperature. For 
every 200-meter increase in altitude, the temperature decreases 
by 1oC [15]. Highlands are colder and lowlands are warmer, at 
certain altitudes malaria transmission does not occur due to the 
extreme temperatures that are not favourable to the mosquito and 
parasite life-cycle [10]. For smaller regions, topography remains 
a single most important aspect that defines large scale differences 
in malaria risk, because climate variables change little over the 
limited range of latitude [16]. In Malawi elevation was associated 
with malaria prevalence and at an elevation of < 650 m, Odd Ratio 
(OR) was 1.32, between 650 and 1100 the OR was 1.89 [17]. 

Slope together with precipitation amounts received at a 
certain location may influence the dispersion of malaria. Flat areas 
on the ground are more prone to accumulate water, creating dam 
rain water, increasing the risk of malaria [18]. In Ghana, swampy 
areas and banana production in the proximity of villages were strong 
predictors of a high malaria incidence [19]. Land cover is another 
player in malaria occurrence. In Kenya, the association between 
land cover type and the presence of anopheline larvae was found 
to be statistically significant and overall, the highest proportions 
of anopheline-positive habitats occurred in pastures (33%) and 
farmlands (32%) followed by swamp habitats (23%), [20] and in 
Ghana an increase in a forested area of 10% was associated with 
a 47% decrease of malaria incidence. Different cultivations in the 

vicinity of homesteads were related to childhood malaria in rural 
areas [18].

The effectiveness of intervention measures against malaria 
can be determined by the Euclidian distance of a place from roads. 
In Zambia it was reported that for every 500 meters increase in 
distance from the road, there was a corresponding 5% increase in 
positive malaria in households [21] and, in Kenya roads was found 
to have the least number of anopheline habitats, 15%, whereas 
habitats in forests had an 18% rate [22]. 

Distribution of water bodies is a major factor that influences 
the malaria occurrence and malaria case distributions. Water 
bodies play a very important role as larval breeding sites for 
malaria mosquitoes. Therefore, the identification of water body 
sites is then a direct indicator for malaria risk occurrences. The 
Euclidian distance to a water body is a determinant of the malaria 
risk incidence [23]. A study carried out in China indicated that 
population living within 60 meters of water bodies had a higher 
risk of contracting malaria [24].In terms of malaria breeding 
in 1934 the following statement was stated: “it may safely be 
inferred that the influence of any production from breeding place 
within 0.81 kilometres radius will be felt there in, at radii of 1.61 
kilometres the influence may be doubtful, and ordinarily at radii 
of more than 1.61 kilometres the influence may be expected to be 
nil” [25]. Recent studies indicate that the mosquitoes flew no more 
than 170 metres after taking a blood meal [26] and, that a hungry 
mosquito will fly up to 1.5 kilometres [27]. 

In Chimoio a positive correlation, r = 0.407 between malaria 
cases and population density and the r2 value indicates 0.165, was 
found [28]. The mosquito breeding, feeding, and resting behaviour 
is often associated with vegetation [28]. There are a number of 
vegetation indices that have been used in remote sensing, but the 
most used index to enhance the vegetation areas is the Normalized 
Difference Vegetation Index (NDVI). The measurement of NDVI 
is from -1 to 1 and, if a value is close to 0 means that there is 
little vegetation in the area. When the value is close to 1, means 
that there is more vegetation in the region [29]. In Brazil, most 
domiciles with more than five notified cases were located near 
areas with high NDVI values [30].

Chimoio is the capital of Manica Province in the Centre of 
Mozambique. Very little research on malaria was carried out in 
Chimoio. Malaria is increasing in the suburbs, urban areas present 
fewer malaria cases than rural areas. The annual overall average 
of malaria incidence is 20.1 % and the Attributable Fraction (AF) 
of malaria is 16%. Children under five are three times more prone 
to malaria than adults and 11.7% of the total annual deaths were 
due to malaria [31].  The two most important climate factors that 
influence malaria in Chimoio were found to be relative humidity 
and, minimum temperature and they show positive high correlation 
with climate [8]. In the spatial epidemiology of malaria, recent 
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studies benefited from the huge progress in the development of 
Geographic Information Systems (GIS). The health practitioner, 
and/or researcher’s ability to locate the precise position of a disease 
in their area allows for the creation of maps of the spatial variability 
and incorporate many variables as can be measured [32].

Precision public health strategy is based on a specific 
site by observing, measuring and responding to inter and intra-
region variability in malaria trends. That makes statistical and 
computational treatments quite involved and, can lead to decision 
support systems to help in malaria eradication, optimizing the 
resources and minimize the impact on the environment [33]. 
The decisions can be in areas such as the right time and place for 
spraying, the correct site to build a water body, the correct time and 
place for drainage and other relevant activities for malaria control 
and eradication. 

Target vector control in high-risk areas, focus on 
asymptomatic and symptomatic infections and manage importation 
risk are needed to control and eradicate the disease. High spatial and 
temporal resolution maps of malaria risk can support all of these 
activities [34]. Risk maps can be used for Precision Public Health 
but, the maps available for malaria were produced at national, 
regional or continental magnitude, such as MARA [35], and they 
have a limited operational use to support local program activities. 

Malaria risk maps of the country, especially for Chimoio, 
have not been produced and it is urgent to have them in order to 
identify areas at risk the Public Precision Health approach. By 
using spatial modelling techniques with GIS, the research goal is 
to map and model malaria risk areas, using socio-demographic, 
climate, and clinical variables in Chimoio, Mozambique.

Materials and Methods
Study area

Chimoio is a municipality located in Manica Province in 
the central region of Mozambique (-19o6´59S, 33o28´59E). The 
population of Chimoio is presently estimated to be 324816 [36]. 
The area is 174 km² at an altitude that varies between 513 and 786 
meters. The Chimoio climate has a warm temperature with dry 
winters from April to July, hot and dry summer from August to 
October and, hot and humid summer from November to April. The 
major economic activities are: agriculture production, livestock, 
general trading, metallurgical industry, food industry, tourism, 
telecommunication, banking and insurances and energy supply [37]. 

Material
For the study the following material was used:

30m×30m Landsat image.a)	

ArcGis 10.2. b)	

Bioclimatic (1950 to 2000) [38]. c)	

Methods
Figure 1 presents the schematic representation of data flow and 
analysis for malaria risk map for Chimoio. 

Figure 1: Schematic representation of data flow and analysis for malaria 
risk map for Chimoio.

The conceptual model to solve spatial problems was used to 
create the Chimoio Map risk [39]. The process involved the fol-
lowing steps:

Step 1: •	 In this stage the problem was stated and was: 
Mapping malaria risk for chimoio

Step 2: •	 Problem breaking down
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Table 1 presents the malaria factors, their weight, classification and the rationale for the classification adapted from literature from 
Zimbabwe, Tanzania and Latin America [16,40-42]. 

Factor Weight Class Influence Rationale

T mean 0.224 < 22oC Low Bellow 22oC sporogony is not completed

> 28 oC Moderate Over 28oC sporogony is affected

22 - 28oC High 22 - 28oC ideal for incubation

Precipit 0.208 <450 mm Low < 450 mm is arid, and mosquitoes will have

450 – 700 mm Moderate difficulties to survive > 700 mm is wet and.

> 1000 mm Low inappropriate for mosquitoes breeding

Altitude 0.123 < 200 m High < 200 m low land and high risk of vector

200 – 500 m Moderate proliferation, 200 to 500 m upland

>500 m Low >1000 m highlands and low risk of mosquitoes’ survival

Slope 0.082 0 – 5o High Appropriate conditions for water stagnation

5 – 15o Moderate

>15o Low >15o inappropriate for water stagnation

LULC 0.082 crop, grass and water bodies High Suitable for mosquitoes’ proliferation

shrubs and mosaic vegetation Moderate

forest, bare, urban Low Not suitable for mosquitoes breeding

DTWB 0.123 < 500 m High The mosquito fly range is 1500 m.

500 – 1500 m Moderate Less than 500 m from WTBD

>1500m Low the risk of malaria is high

DTR 0.038 < 2.5 Km Lowe < 2.5 km walking distance to clinic

2.5 – 5 Km Moderate 2.5 to 5 km clinic can be reached by bicycle

> 5 Km High < 5 Km interventions are difficult

Pop dens 0.051 < 6000 pers/Km2 Low High populated area has higher risk

6000 – 9000pers/m2 Moderate since mosquitoes have abundant

>9000 pers/km2 High blood meal close by.

Malar prev 0.051 < 14% Low High prevalence areas have higher

14 – 21% Moderate risk since mosquitoes do not have

> 21% High to travel long for blood meal

NDVI 0.047 -0.2777 – 0 Low

0 – 0.255 Moderate

0.255 – 1 High High NDVI is related to high malaria risk

Table 1: Classification, weighing and rationale of malaria risk factors.
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For this stage the input data set or malaria risk factors were 
the following: average Temperature (Tmean), Precipitation (PP), 
Altitude (Alt), Slope (SLP), Distance to water body (DTWB), 
Distance to road (DTR), Normalised Difference Index (NDVI), 
Land use and land cover (LULC), Malaria prevalence (Mal prev) 
and Population density (pop dens).

Average temperature (Tmean)

Long-term minimum and maximum temperature was 
extracted from the Bioclim [38] and the average temperature 
calculated. In this study average temperature below 22°C were 
classified as low risk for malaria transmission, while those from 
22°C-28°C were classified as high-risk for malaria transmission 
and temperatures above 32°C were classified as of moderate risk. 

Precipitation (Prec) 

Precipitation data were extracted from the Bioclim Data. 
In the study, areas that received the precipitation less than 450 
millimetres were classified as low risk, those that received a 
precipitation between 450 to 700 millimetres were classified as a 
moderate risk, and the ones over 700 millimetres were classified 
as having high-risk. 

Altitude (Alt)

A digital elevation model at 30×30 m resolution was used to 
estimate the altitude. Areas below 200 m (lowlands) were classified 
as being the highest risks for malaria occurrence, areas between 
201 to 500 metres (uplands) were classified as having moderate 
risk and over 500 m (midlands) were classified as having the least 
risk of malaria exposure. 

Slope (SLP)

The slope was derived from the 30m×30m digital elevation 
model, obtained from the spatial analysis tool from ArcGis. In the 
study, areas of from 0 to 5 degrees were classified as being high-
risk, those from 5 to 15 degrees were classified as of moderate risk, 
while those over 15 degrees were classified as having the lowest risk. 

Land cover and Land-use (LCLU) 

Land-use and land cover data were retrieved from the most 
recent (April 2016) the 30m×30m Landsat satellite image (GIS 
Geography, 2016). The image was reclassified into different LULC 
classes. Areas with crops, grass and water bodies were classified as 
having the high-risk of malaria. Areas such as shrubs and mosaic 
cover vegetation were classified has having a moderate risk of 
malaria, while the areas with forest, bare, and urban settlements 
were classified as having the lowest risk of malaria. 

Distance from Roads (DTR)

Euclidean distance to nearest road was calculated using 
ArcGIS, classifying a 2016, 30m ×30m Landsat image. Distances 

of places from the road were then calculated using the measuring 
distance function in ArcGIS software. In the study, places over 5 
km from the roads were classified to be at highest risks to malaria, 
those between 2.6 km and 5 km from roads were classified to be 
of moderate risk and those less than 2.5 km from the roads were 
classified as having the lowest risk of malaria infection.

Distance to Water Bodies (DTWB) 

Distance to the nearest water body were calculated with 
ArcGIS, classifying a 2016, 30m×30m Landsat image for water 
and undefined. Distance from water bodies were then calculated 
using the measurement distance function in ArcGIS software. In 
this study, areas with less than 500 metres from a water source 
were classified as being a high-risk area, those between 501 to 
1500 metres were classified as moderate risk areas while those 
above 1500 metres from water bodies were classified as being of 
low risk to malaria. 

Population density (pop dens)

Data on population density were calculated from the National 
census population projections for 2014. In the study places over 
9000 people/ km2 were classified to be at highest risks to malaria, 
those between 6001 to 9000 people/ km2, were classified to be of 
moderate risk, and those less than 6000 person/ km2 were classified 
to be as low risk of malaria infections. 

Malaria Prevalence (Mal prev)

Malaria cases diagnosed by health personnel as described 
elsewhere Ferrão et al. (2016) were used. In the study over 21% 
prevalence were classified as being the highest malaria risk areas, 
between 14 and 21% were classified as being of moderate malaria 
risk and, less than 14% were classified as having the lowest risk of 
malaria occurrence.

Normalized Difference Vegetation Index (NDVI)

The NDVI was extracted from a Landsat image. The NDVI 
map has been grouped into three principal categories: -0.288 to 0, 
and classified as moderate risk, 0 to 0.255 classified as moderate 
risk and 0.255 to 0.986 classified as high risk was classified as 
being of high malaria risk [43].

Step 3: Analytical hierarchical process (AHP)•	

The analytical hierarchical process is a method that uses 
hierarchical structures to represent a problem and makes judgments 
based on expert panels to derive priority scales [44]. In this step, 
the input datasets were explored to understand their content 
and attributes within and between data sets are more important 
for solving the stated problem and searching for trends in the 
dataset[45]. 

To obtain the weights for each individual factor for the map 
the following step was as follows: 



Citation: Ferrão JL, Niquisse SA, Mendes JM, Painho M (2017) Mapping and Modelling Malaria Risk Areas Using Climate, Socio-Demographic and Clinic Variables in 
Chimoio, Mozambique. J Earth Environ Sci: JEES-151. DOI: 10.29011/JEES-151. 100051

6 Volume 2017; Issue 10

a) Formulation of a pair-wise comparison matrix for each of the 
input variables. 

b) Establishment of the relative weights of each input variable. 

c) Checking for consistency in the pairing process [16].

The fundamental scale to help in, the weighting process a)	
was used to develop the pair-wise comparison matrix (Table 2).

Establishment of the relative weights of each input b)	
variable: Indeed, the malaria risk factors don’t have the weight 
and role in the modelling of the final malaria risk map. Therefore, 
in order to designate the importance of each variable, they were 
weighted using a pair-wise comparison method from the AHP 
template worksheet [45].

Checking for consistency: After computing the pair-wise c)	
matrix and, to measure if the derived matrix was derived at an 
acceptable level, a consistency test was calculated. For this study, a 
consistency index less than 10% was considered good enough [16]. 
A result above 10%, the matrix was revised until the indication of 
an acceptable level of acceptance [44].

Extremely less important 1/9

1/8

Very strong less important 1/7

1/6

Strongly less important 1/5

1/4

Moderately less important 1/3

1/2

Equal importance 1

2

Moderately more important 3

4

Strongly more important 5

6

Very strong more important 7

8

Extremely more important 9

Table 2: Fundamental scale for pair-wise comparison matrix.

Figure 2: The spatial analysis depicted in (Figure 2) was performed.

Step 4: Performing analysis•	

Layers for Tmean, PP, Alt,SLP, DTWB, DTR, NDVI, 
LULC, malaria prevalence (%) and population density (person/
km2) were created in a raster dataset. To compare the values of 
the classes between layers, numeric values to classes within each 
map layer was assigned from 1 to 3 being low, moderate and 
high-risk respectively. The reclassification was carried out and all 
measures had the same numeric scale giving them the same level 
of importance. 

For the suitability model, reclassified outputs of Tmean, PP, 
Alt, SLP, DTWB, DTR, NDVI, LULC, Mal prev, Pop dens were 
combined. The final suitability map was produced by combining 
all the maps together. Weights were assigned at the same time as 
combining the suitability maps [44]. 

Step 5: Verifying the result 

After the result of the spatial analysis the correctness of the 
findings were discussed with experts and places visited.

Results
Table 3 shows the 10 x 10 comparison matrix of malaria risk 

factors used in the study and a value of 1 for example, means that 



Citation: Ferrão JL, Niquisse SA, Mendes JM, Painho M (2017) Mapping and Modelling Malaria Risk Areas Using Climate, Socio-Demographic and Clinic Variables in 
Chimoio, Mozambique. J Earth Environ Sci: JEES-151. DOI: 10.29011/JEES-151. 100051

7 Volume 2017; Issue 10

factors under comparison have the same weight, and they affect the malaria occurrence equally. A value of five would mean the factor 
in the column is five times more important in the malaria risk occurrence than the comparison in the row.

Tmean Prec Alt Slope LULC DTWB DTR Pop den Prev NDVI

Tmean 1.00 1.00 3.00 4.00 4.00 2.00 6.00 4.00 4.00 4.00

Prec 1.00 1.00 3.00 4.00 3.00 1.00 7.00 4.00 4.00 4.00

Alt 0.33 0.33 1.00 3.00 3.00 1.00 4.00 2.00 2.00 3.00

Slope 0.25 0.25 0.33 1.00 1.00 2.00 1.00 3.00 1.00 1.00

LULC 0.25 0.33 0.33 1.00 1.00 2.00 2.00 5.00 1.00 1.00

DTWB 0.50 1.00 1.00 0.50 0.50 1.00 3.00 4.00 4.00 2.00

DTR 0.17 0.25 0.25 1.00 0.50 0.33 1.00 1.00 1.00 2.00

Pop den 0.25 0.50 0.50 0.33 0.20 0.25 1.00 1.00 2.00 4.00

Prev 0.25 0.50 0.50 1.00 1.00 0.25 1.00 0.50 1.00 2.00

NDVI 0.25 0.25 0.33 1.00 1.00 0.50 0.50 0.25 0.50 1.00

Table 3: 10 x 10 Comparison Matrix of Risk Factors used in the study.

The weights of each factor used for the spatial model to produce the malaria risk map are presented in Table 2. Tmean (22.4%) and 
precipitation (20.8%) presented the highest weights followed by DTWB (12.3%) and altitude (10.4%), LULC (8.2%), slope (7.3%), pop 
dens and malar prev (5.1%), NDVI (4.7%) and DTR (3.8%). The consistency index for the pair-wise matrix was 9%.

The special model to produce the malaria risk map formula was:•	

[(Tmin*0.224) + (precipitation*0.208) + (altitude*0.104) + (slope*0.073) + LULC*0.082) + (DTWB*0.123) + (DTR*0.038) + (Pop 
dens*0.051) + (Mal prev*0.051) + (NDVI*0.047)]

Figure 3 presents the malaria prevalence, slope, temperature, NDVI and LULC. In terms of malaria prevalence, Chimoio presents 
42% of the area with low risk, 17 % with moderate risk and, 41% with high-risk areas. It is possible to see that the prevalence risk of 
malaria varies spatially in the Chimoio Municipality. For slope, Chimoio presents 2% of the area with low risk, 52 % with moderate risk 
and 46% with high-risk areas. For average temperature, Chimoio presents 100% of moderate risk areas. 

For NDVI Chimoio presents 5% of the area with low risk, 12% with moderate risk and 88% with high-risk areas. For LU/LC 
Chimoio presents 39% of the area with low risk, 4% with moderate risk and 43% with high-risk areas.

Figure 3: Malaria risk for malaria occurrence. a) Prevalence b) Slope c) Temperature d) NDVI e) LULC Source: (Ferrão et al., 2016).
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Figure 4 presents the precipitation, altitude, Distance to a 
water body (DTWB), Distance to road (DTR), and population den-
sity (person/km2). For precipitation, Chimoio presents 100% mod-
erate risk areas. For altitude, Chimoio presents 34% with moderate 
risk and, 66% with high-risk areas. For DTWD, Chimoio presents 
44% of the area with low risk, 40 % with moderate risk and, 16% 
with high-risk areas.  For DTR, Chimoio presents 40% of the area 
with low risk, 43% with moderate risk and 17% with high-risk ar-
eas. For population density, Chimoio presents 92% of the area with 
low risk, 5% with moderate risk and 3% with high-risk areas.

Figure 4: Malaria risk for malaria occurrence. a) DTWB, b) Altitude, c) 
Population density, d) Distance to road, e) Precipitation.

Figure 4 presents the Chimoio map risk for malaria after the 
consolidation of the weighted malaria risk factors used in the pres-
ent study. Chimoio presents 0% of the area with low risk, 96% 
with moderate risk and 4% with high-risk areas. The Map depicts 
that the central and south-west “Bairros” namely Centro Hipico, 
Trangapsso, Bairro 5 and 1o de Maio while the rest of the “Bair-
ros” have a moderate risk of malaria.

Figure 5: Malaria risk.

Discussion
In this study it was determined that climatic factors mean 

temperature and precipitation presented the highest weights 
followed by DTWB, 12.3% and altitude 10.4% and the other 
climatic factors presented the least weights. The results are similar 
to other studies in Mozambique and the World [16,41,42,46-48]. 
The Mozambique risk Map produced by other authors are similar 
with the findings of this study [49,50]. The malaria risk map 
produced by the study differs in many ways with other available 
models. The area is small (174 km2) and it used ten risk factor 
variables. It also uses high, sharp and fine spatial and temporal 
resolutions of risk factors and includes climate variable data that 
impacts in the factors that affect the mosquito proliferation. It also 
includes human-induced variables such as distance from roads and 
LCLU changes and, clinical data. The model is reasonably scaled 
to present variance in malaria risk at micro-scale level. A relatively 
small number of studies have included ten risk factor variables 
in geostatistical models for malaria risk mapping. Similarly, this 
approach can also be applied for modelling and prediction of other 
environment driven diseases. 

Conclusion
The weights used in this map are consistent with several 

studies and the map is reliable. The entire population of Chimoio 
his at a risk to contract malaria and, 96 % have a moderate risk 
and 4% high-risk. Trees in the Chimoio streets and households are 
probably resting areas for mosquitoes. Precise estimation of malaria 
risk has important implications in Precision Public Health, and the 
planning of effective control measures such as the right time and 
place to spray for vector combat the right time to prune the trees 
from the trees and homesteads, distribution of bed nets, correct site 
to build a water body, the correct time and place for drainage and 
other relevant activities for malaria control and eradication. The 
study demonstrated the importance of the possible use of GIS and 
remote sensing in predicting, mapping and modelling the malaria 
risk in Chimoio municipality. More studies should be carried out 
such as bed net usage, the relationship between household presence 
of trees and malaria and others. 
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