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Abstract
Since one’s breath biomarkers have been proved to be related with diseases, it is possible to detect diseases by analysis 

of breath samples captured by e-noses. In this paper, a novel medical e-nose system specific to disease diagnosis was used to 
collect a large-scale breath dataset. Methods for signal processing, feature extracting as well as feature & sensor selection were 
discussed for detecting diseases on respiratory, metabolic and digestive system. Sequential forward selection is used to select 
the best combination of sensors and features. The experimental results showed that the proposed system was able to well dis-
tinguish healthy samples and samples with different diseases. The results also shown the most significant sensors and features 
for different tasks, which meets the relationship between diseases and breath biomarkers.
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Introduction 
Traditional diagnosis methods include blood, urine tests 

and some other methods. Nowadays, biological technology and 
computer science are playing their roles in medical applications. 
Technic developments in bioimaging [1], biochips [2] and 
biosensors [3] have brought new aids in disease diagnosis. Breath 
analysis is a way to detect some diseases by the examination of 
certain compounds in human breath, which is largely composed 
of oxygen, carbon dioxide, water vapor and nitric oxide, as well 
as less than 100 ppm (parts per million) of mixture with over 500 
kinds of components. The components include carbon monoxide, 
methane, hydrogen, acetone and numerous Volatile Organize 
Compounds (VOCs) [4,5]. Table 1 summarizes the concentrations 
of typical compositions from human breath.

Concentration Molecules

percentage oxygen, water, carbon dioxide

parts-per-million
acetone, carbon monoxide, methane, 

hydrogen, isoprene, benzenemethanol

parts-per-billion

formaldehyde, acetaldehyde, 1-pentane, 

ethane, ethylene, other hydrocarbons, 

nitric oxide, carbon disulfide, methanol, 

carbonyl sulfide, methanethiol, ammonia, 

methylamine, dimethyl sulfide, benzene, 

naphthalene, benzothiazole, ethane, acetic 

aide

Table 1: Typical compositions of human breath.

A breathing process includes three stages. The first stage 
is the exchange of gases between the outside air and the alveoli 
and between the alveoli and the blood in pulmonary capillary [6]. 
The second is the exchange between oxygen and carbon dioxide 
in blood during gas transportation in the blood. The third is the 
exchange of gases between blood and tissue cells. During this 
process, endogenous molecules produced by metabolic processes 
are separated from blood and enter into the alveolar air via the 
alveolar pulmonary membrane [5,7] and thus into the exhaled 
breath. Variation in the concentration of these molecules can 
suggest various diseases or at least changes in metabolism [8]. For 
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instance, nitric oxide in breath can be measured as an indicator of 
asthma or other conditions characterized by airway inflammation 
[9]. Increased pentane and carbon disulfide have been observed in 
the breath of patients with schizophrenia [10]. Breath concentration 
of Volatile Organic Compounds (VOCs) such as cyclododecatriene, 
benzoic acid, and benzene is much higher in lung cancer patients 
than in control groups [11]. Acetone has been found to be more 
abundant in the breath of diabetics [12,13], and breath ammonia 
is significantly higher in patients with renal diseases [14]. These 
molecules are considered as biomarkers of the presence of diseases 
and clinical conditions. Much can be learnt from them about the 
overall state of an individual’s metabolism or physical condition.

Compared with these methods, breath analysis has many 
advantages [15]. Firstly, breath analysis is a non-invasive method, 
and it causes least harm to both the subjects and the personnel 
who collect the samples. Secondly, its result can be obtained 
immediately. Thirdly, the sample collection is quite easy for a 
subject, since the only requirement to collect a breath sample is 
that the subject must be breathing. Therefore, increasing interest 
has been expressed about the applications of breath analysis in 
medicine and clinical pathology [16,17]. However, most of the 
existing trials [18] on breath diagnosis only focus on very limited 
kinds of diseases. The reason may be complicated. Lack of specific 
breath analysis system and method, as well as a large enough 
dataset will all block the process of research. Also, some of the 
diseases may not be so related to the breath system, which will not 
give a satisfactory result. Basing on the process of gas exchange 
in breath, we can see that diseases of respiratory system and 
metabolic system will strongly affect one’s exhaled breath. On the 
other hand, since the respiratory passage is connected to digestive 
system, it may be possible to detect diseases of digestive system 
by breath analysis. We thus collected a breath analysis dataset with 
both healthy samples and samples with different kinds of diseases 
of respiratory, metabolic and digestive system by a specific e-nose 
system. Experiments were organized on the collected dataset to 
discover a proper method of breath analysis for disease diagnosis.

Literature Review 
Breath Biomarker and Diseases

Nowadays, the concentration of some biomarkers in breath 
has been proven to be related with certain diseases. For example, 
lung diseases may alter Volatile Organic Compounds (VOCs) in 
breath because both Mycobacteria and oxidative stress resulted 
from Mycobacterial infection generate distinctive VOCs. And 
digestive system diseases will reflect in hydrogen of ones’ exhaled 
breath because sugar could not be fully digested and would 

be decomposed or fermented and produce more hydrogen. By 
selecting proper sensors that can respond to the components, it is 
possible to analyze a person’s breath odor and thus his or her health 
state. A few examples will further prove these points. The level of 
nitric oxide can be used as a diagnostic for asthma [19]. Patients 
with renal disease have higher concentrations of ammonia [20]. 
The concentration of VOCs, such as cyclododecatriene, benzoic 
acid, and benzene is much higher in lung cancer patients [21].

Breath Analysis with E-nose
Currently, the measurement of exhaled breath is usually 

performed by two common gas analysis apparatuses, Gas 
Chromatography (GC) [22] or electronic nose (e-nose) [23]. GC 
can separate and identify molecules that are responsible for typical 
odors occurring in specific diseases, which is very accurate for 
disease identification. But this kind of apparatus is expensive and 
not portable. Its sampling and assaying processes are complicated 
and time consuming (about one hour for one sample), and its 
results require expert’s interpretation [24]. Therefore, it is hard to 
use such apparatus as a domestic or clinical tool.

Electronic noses, or e-noses, are devices that “Smell” or 
detect odor. An e-nose consists of a mechanism for chemical 
detection, such as an array of electronic sensors, and a mechanism 
for processing. Using e-nose is a less expensive and more portable 
way for breath analysis. Recently, e-nose has gradually been used 
in medicine for the diagnosis of renal disease [25], diabetes [26], 
lung cancer [27], and asthma [28]. Though all of these methods 
work satisfactorily in breath analysis, their results could possibly 
be improved. That is because, commercial e-noses, with their 
marketing concerns, have to provide versatility in applications, 
such as coffee, wine, and fragrances identification. The versatility, 
however, limits their performance in disease detection since their 
sensor selection has to match broad applications.

The idea of e-nose is inspired by the mechanisms of human 
olfaction. In general, basic elements of an e-nose system include an 
‘odor’ sensor array, a data preprocessor, and a pattern recognition 
engine [29]. Among them, the sensor array, like signal receptors, 
is the key part of e-nose. The application of sensor array on odor 
recognition was demonstrated firstly by Persaud and Dodd in 1982 
[30]. Currently, e-nose has been much developed and used to 
fulfill a large number of industrial needs, such as food, chemistry, 
fragrances, security, and environment [31]. Recently, the feasibility 
of using e-noses for monitoring the health of human and diagnosing 
diseases in an early stage has been demonstrated [32].

As early as 1997, Wang et al. [33] designed an e-nose with 
one SnO2 thin film sensor for diabetes diagnosis. The authors 
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tested their device by using the breath samples collected from 18 
patients and 14 healthy persons. The concentration of blood sugar 
of the subjects was used as reference. The results showed that the 
e-nose was able to diagnose diabetes with a sensitivity of 77.8% 
and a specificity of 35.7%. In 2001, Lin et al. [32] reported a study 
about the application of e-nose with six quartz crystal sensors to 
detect renal diseases. Discriminant Analysis (DA) was carried out 
to analyze the sensor signals. The clinical test result showed that 
the e-nose could discriminate the breath samples from 30 normal 
subjects, 83 uremia patients, and 61 chronic renal disease patients 
with a total correct classification of 86.78%.

In 2009, Ogorodnik et al. [34] analyzed VOCs from a breath 
sample of a patient with different lung diseases by using an e-nose 
with ten MOSFET sensors and four SnO2 sensors. In total, 66 
individuals – 23 with asthma, 3 with chronic obstructive pulmonary 
disease (COPD), 12 with pneumonia, 13 with lung cancer, 4 in 
the past operation state (removed lung cancer), and 11 healthy 

volunteers were tested at two different times and ANN analysis 
was employed to classify the samples of cancer and other lung 
diseases. The results showed that the e-nose could identify lung 
cancer with 100% accuracy, healthy subjects with 100% accuracy, 
and asthma with 82.6% accuracy. In 2010, Guo et al. [35] proposed 
a method of monitoring the blood glucose levels of diabetics via 
measuring the concentration of breath acetone. A SVM classifier 
was used to evaluate the accuracy of classifying the samples 
into the groups with different blood glucose levels. The results 
indicated that the system was not only able to distinguish between 
breath samples from patients with diabetes and healthy subjects, 
but also to represent the fluctuation of blood glucose of diabetics. 
In the same year, Guo et al. [36] improved accuracy of diabetes 
condition monitoring by using a SRC method. Coupled with SRC, 
the system was able to classify these levels with a much better 
accuracy than the accuracy reported in [37]. Table 2 concludes 
some existing trials on medical breath analysis with e-noses.

Year Researcher Disease Data size Accuracy
1997 Wang et al. Diabetes 32 77.8%
2001 Lin et al. Kidney 174 86.78%
2009 Ogorodnik et al. Lung cancer 66 100%

2011 Guo et al.
Diabetes 225 87%

Kidney disease 218 86%
Digestive disease 218 70%

Table 2: Trials on medical breath analysis with e-noses.

Breath Analysis
Breath Dataset

To evaluate the performance of our device, a large-scale breath dataset was collected. We cooperated with Guangzhou Hospital of 
Traditional Chinese Medicine and collected data from inpatient volunteers with a specific e-nose device [38]. 

In the device, there were 12 different odor sensors selected based on the relationship between breath biomarkers and diseases into 
consideration. The sensors in the device should be sensitive to the VOCs, carbon dioxide, humidity, and temperature. Thus, a sensor 
array with 11 sensors were optimized for the purpose of detecting one’s breath. The sensor array included six ordinary Metal Oxide 
Semiconductor (MOS) sensors, three temperature modulated MOS sensors, a carbon dioxide sensor, and a temperature-humidity sensor. 
Specifically, the temperature-humidity sensor had two input channels for temperature and humidity respectively. Therefore, there were, 
in total, 12 input channels. The model, manufacturer and function of the sensors are listed in Table 3. The suffix “-TM” indicates a 
temperature-modulated sensor.

Channel Model Manufacturer Function Sensitivities (ppm)
1 TGS4161 Figaro Inc., Japan CO2 350-10000
2 TGS826 Figaro Inc., Japan VOCs, NH3 30-5000
3 QS01 FIS Inc., Japan VOCs, H2, CO 1-1000
4 TGS2610D Figaro Inc., Japan H2, VOCs 500-10000
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5 TGS822 Figaro Inc., Japan VOCs, H2, CO 50-5000
6 TGS2602-TM Figaro Inc., Japan VOCs, NH3, H2S 1-30
7 TGS2602 Figaro Inc., Japan VOCs, NH3, H2S 1-30
8 TGS2600-TM Figaro Inc., Japan H2, VOCs, CO 1-100
9 TGS2603 Figaro Inc., Japan NH3, H2S 1-10
10 TGS2620-TM Figaro Inc., Japan VOCs, H2 50-5000
11

HTG3515CH Humirel Inc., France
Temperature

12 Humidity

Table 3: Summary of the sensor array VOCs: volatile organic compounds; ppm: parts per million; TM: temperature-modulated.

For each sample, we first collected the patient’s breath 
and recorded the signals. The diagnosis was then given by an 
authoritative doctor as the classification labels. Then some 
biochemical indicators, such as blood glucose, blood pressure and 
blood lipids were collected. Finally, in this dataset, there were in 
total over 10,000 samples of 47 classes, including 1491 healthy 
samples and samples of 46 different kinds of diseases. In this paper, 
a subset of healthy samples and samples for six kinds of diseases 
are selected for experiments, including breast disease, cardiopathy, 
diabetes, lung disease, kidney disease and gastritis. Table 4 shows 
the number of each class used in selected subset.

All the samples were collected from hospitals in Guangzhou. 
However, since most of the healthy samples were provided by 
medically-examined young people while disease samples by elder 
patients, it is difficult to make age-matched subsets, which is a 
limitation of this dataset. 

Type Class Data size

Healthy Healthy 1291

Respiratory system
Lung 498

Respiratory 130

Metabolic system
Diabetes 585

Kidney 473

Digestive system Stomach 310

Table 4: Number of samples in each class.

Preprocessing

Before analyzing data, original signals should be preprocessed 
so as to be transformed into standard samples. Four steps were 
taken: faulty signal removal, de-noising, baseline manipulation 
and normalization. A faulty signal is a common problem in 
devices with sensors. In our system, causes of faulty signals were 
complicated, including misoperation, bad connection and device 
damage. In order to make the system more robust, these signals 

should be removed before analysis. De-noising aims to remove 
the noise from the original signals by utilizing a low-pass filter 
since the signal is mainly interfered by high-frequency noise. The 
purpose of baseline manipulation is to compensate baseline drift. 
The baseline value is the average response in the baseline stage of 
each sensor. The value is then subtracted from the whole response 
curve to eliminate the interference of background noise of the 
sensors [39]. Assume that for each sensor transient of each sample, 
there are k dimensions, where k = 1, …, Nk, and b dimensions in 
the baseline stage, where b = 1, …, Nb. The response at time tk is 
denoted as . The baseline response is . Then baseline 
manipulation can be computed as:

Normalization is used to compensate for sample-to-sample 
variations caused by analyte concentration. is a sample 
after the baseline manipulation step, and the normalized response 

 can be defined as:

Feature Extraction

To reduce the dimension of the origin features, Principal 
Component Analysis (PCA) can be used. PCA projects high-
dimensional data into a low-dimensional subspace while keeping 
most of the data variance. Some low-dimensional geometric 
features can also be extracted from the origin response curves. One 
of the traditional features of gas sensors is steady state response. 
When a gas sensor is used to sense a gas sample, its response will 
reach a steady state in a few minutes. The steady state response has 
a close relationship with the concentration of the measured gas. 
Therefore, the 9D feature vector contains most of the information 
needed for disease screening.
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However, additional useful information is carried in the transient responses [40]. Transient responses are often related to the 
change of gas flow (injection/purge) or temperature (for TM sensors). The feature set includes magnitude, difference, derivative, second 
derivative, integral, slope and phase features, as well as features in frequency domain such as fast Fourier Transformation (FFT) and 
wavelet. The extracted features in both space domain and frequency domain are described in Table 5.

Feature Characteristics

Space

PCA Reduced dimension of the origin features with PCA method.

Magnitude

Down-sampled values of the curve’s magnitude M.

The maximum magnitude.

Down-sampled values of the normalized magnitude M/ max (M).

Mean values of the magnitude.

Derivative
Down-sampled values of the curve’s derivative D.

The maximum and minimum derivative.

Second derivative The maximum and minimum second derivative in both the injection and purge stage.

Integral The integral of the five intervals of the curve; the intervals are the same with the difference feature.

Slope The slope of the five intervals of the curve; the intervals are the same with the difference feature.

Phase Feature
The phase feature is proposed in [39]. First, the response is transformed to the phase space, which is 

spanned by its magnitude and derivative. Then, the phase feature is defined as 

Frequency
FFT Fast Fourier tranformation

Wavelet Wavelet transformation

Table 5: Summary of the transient features. PCA: principal component analysis.

Experiments
Feature Selection for Different Diseases 

For each class, the first 50 samples collected by the first device were chosen as the labeled training sets and the rest were test 
samples. Logistic regression method was adopted as the classifier. Sequential Forward Selection (SFS) method was used to optimize 
the features. SFS method is a greedy strategy. In each iteration, one feature was selected from all features that could achieve the 
best classification accuracy together with the features already selected. Figure 1 shows the results of forward selection in different 
disease diagnosis tasks. For each graph, the horizontal axis represents the number of features used and the vertical axis represents the 
classification accuracy. We will find the peak point of each curve and record which features are selected in the peak points.
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Figure 1: Forward selection result of six binary-classification tasks. For each graph, the horizontal axis represents the number of features used and the 
vertical axis represents the classification accuracy.

In Table 6, we concluded the best combination of features and sensors selected for each task (the peak points in each curve of Figure 
1). It can be found that wavelet features contributed most in all the tasks. Pca feature, Mean Mag feature, phase feature and derivative 
feature differed in different tasks. Other features did not improve the performance of the system. The sensors that contributed most to 
meeting the relationship between diseases and breath biomarkers in each task are listed in Tables 7, 3. S7 (TGS2602) contributes most 
to metabolic diseases.

Task(Vs Healthy) Accuracy Features

Respiratory system

Lung 0.698
Pca of S9,

Wavelet of S4

Rerspiratory 0.717
Derivative of S8,

Wavelet of S6
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Metabolic system

Diabetes 0.913
phase of S7,

Wavelet of S4

Kidney 0.779
Derivative of S10,

Wavelet of S7

Digestive system Stomatch 0.717

Maxmag of S4,

Slope of S6

Wavelet of S6

Table 6: Experimental results on different disease diagnosis tasks.

Multi-Disease Diagnosis

To further evaluate the performance of the system, we built a classification tree to deal with the multi-disease diagnosis problem. 
Synthetic Minority Over-Sampling Technique (SMOTE) [41] was used in the experiment. SMOTE method is an over-sampling approach 
in which the minority class is over-sampled by creating “Synthetic” examples rather than over-sampling with replacement. Figure 2 
shows the result of the classification tree. When an unknown sample comes, it will first be tested if it is diabetes. Then check if it is 
healthy or kidney disease in turn. Finally, if the sample belong to none of these classes, it may be disease in lung, stomach or respiratory 
system. Accuracy of each level of the classification tree is 90%, 75%, 63% and 76%, respectively. It can be seen that metabolic diseases 
are easier to be separated out than diseases of respiratory system or digestive system. However, this is only for one-label samples. For 
those patients with more than one disease, multi-labeled methods should be considered. 

Figure 2: The optimal classification tree for multi-diseases diagnosis.

Conclusions 
This paper discussed breath analysis method for diseases 

on respiratory, metabolic and digestive system. The sensors, 
features and signal preprocessing methods were introduced, and 
a specific medical dataset was collected. Experiments were taken 
on the new collected datasets to discover the best selection of 
sensors and features for different diseases with an SFS method. A 
classification tree is built on the collected data for the multi-class 
task.The experimental results showed that better accuracy could 

be achieved by an optimal combination of features and sensors 
for different tasks. Wavelet feature is the most significant feature 
in majority of disease diagnosis tasks, while different sensors 
contribute differently. The most significant sensors for different 
diseases are just in accord with the relationship of diseases and 
biomarkers listed in Table 7. The multi-class classification tests 
also produced a satisfactory output. Metabolic diseases are more 
likely to be diagnosed correctly than other diseases by means of 
breath analysis.
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Diseases Breath Biomarkers

diabetes [42] acetone

kidney disease [43] ammonia

lung disease [11]
benzene,1,1-oxybis-, 1,1-biphenyl,2,

2-diethyl, furan,2,5-dimethyl-, etc.

Respiratory disease [44] pentane, nitric oxide, carbon monoxide

digestive system disease 

[45]
hydrogen

Table 7: Breath biomarkers and related diseases.

However, there is still more to work on how to find other 
diseases that may be detected from human breath, as well as multi-
labeled diagnosis. Moreover, discovering the deeper relationship 
between one’s breath and the body states such as blood glucose, 
blood fat, blood press and other biochemical indicator is also 
worthy of studying.
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