Six-Minute Walk Test: A Study to Evaluate Normal Values in Female Saudi Arabia Population

Saumy Johnson1*, Hajed M Al-Otaibi2, Khaled Ali Al-Awam3
1Assistant Professor in Respiratory Therapy, Inaya Medical College, Riyadh, Saudi Arabia
2Assistant Professor and Chair, Department of Respiratory Therapy, King Abdulaziz University, Saudi Arabia
3Assistant Professor and Chair, Department of Respiratory Therapy, Inaya Medical College, Saudi Arabia

*Corresponding author: Saumy Johnson, Assistant Professor in Respiratory Therapy, Inaya Medical College, Riyadh, Saudi Arabia

Citation: Johnson S, Al-Otaibi HM, Al-Awam KA (2020) Six-Minute Walk Test: A Study to Evaluate Normal Values in Female Saudi Arabia Population. Ann Case Report 14: 470. DOI: 10.29011/2574-7754.100470

Received Date: 23 August, 2020; Accepted Date: 29 August, 2020; Published Date: 04 September, 2020

Abstract
Background: Different ethnic populations have normal values for reference. These values are vital to a precise interpretation of the 6MWT in clinical practice.

Objective: To evaluate normal six-minute walk distance among young Saudi female population.

Design: Cross sectional, Prospective.

Setting: Academic set up.

Patients and Methods: Cross sectional study conducted on female volunteers aged 18-30 years old. 6MWD was done in a 30 meters long corridor. Vital signs were measured before and after the test. MET was calculated from the distance walked.

Main Outcome Measure(s): The primary outcome measure was the 6MWD.

Results: Sixty-nine female volunteers participated in the study. Mean age was 23.00 (1.67) (years) and BMI was 22.67(4.10) kg/m². 6MWT mean distance covered was 403.43 (91.62) meters. The Metabolic Equivalent and Maximum Heart Rate (%maxHR) achieved were 2.81(0.76) ml/kg/min and 50.41(6.7) %, respectively. Height was found to be positively correlated with 6MWD. The 6MWD was found to be in agreement with the reference equation for Saudi population (P <0.05). There is a significant difference in heart and respiratory rates, p<0.000, CI {-14.16-(-4.54)}, {-5.45-(-2.63)} respectively.

Conclusion: Height was found to be positively correlated with 6MWD. A large multicenter study is required to confirm the present data and to include a larger age scale.

Keywords: Female; Saudi Arabia; Six-minute walk distance; Six-minute walk test

Abbreviations: 6 MWD: Six-minute walk distance; 6MWT: Six-minute walk test; SRU: Scientific Research Unit; BMI: Body Mass Index; MET: Metabolic Equivalent; %maxHR: Maximum Percentage HR

Introduction
Six-Minute Walk Test (6MWT) is a simple method of evaluating exercise capacity of an individual. Assessment of functional capacity of an individual without any equipment or additional training is a unique to 6MWT [1]. Furthermore, it examines global and integrated responses of pulmonary and cardiovascular systems, systemic circulation, peripheral circulation, blood, neuromuscular units, and muscle metabolism [2]. However, it does not provide parameters about each organ systems compared to other cardiopulmonary exercise tests [1]. 6MWT was found to be more suitable in patients with respiratory disorders compared to 12 min walking [3]. As most of activities of daily living are done in submaximal level of effort makes 6 MWT a superior assessment of daily activities of living.

Different ethnic populations have normal values for reference. These values are vital to a precise interpretation of the 6MWT in clinical practice [4,5]. Many studies have shown that these reference values differ from those for western populations.
Within this context, few researches performed in Arab population. Alameri, H et al demonstrated that Saudi population have a shorter 6MWD compared to other Caucasian population [4]. Zou et al illustrated that reference equations from Caucasian, Canadian and Chilean populations have a tendency to overestimate walking distance of Chinese and Brazilian population while Arabian equations tend to underestimate it [3,6,7-10]. A recent systematic review reported that among different reference equations in healthy population, independent predictors of the 6MWD include height, weight, age and sex. Despite that large differences in predicted 6MWD occur in these researches [11-23]. The present study aims to evaluate normal 6MWD among young female Saudi Arabia population.

Materials and Methods

A prospective cross-sectional study performed over one year, 2017-2018. Participants were recruited through convenient sampling. Ethical approval was obtained from IRB of Scientific Research Unit (SRU) at Medical College. All participants signed a written consent form. Anthropodermic data including height, weight, and age as well as participants’ medical history were collected before the 6MWT. 6MWT procedures were explained to the participants and any questions concerning procedures were answered. Height was measured using a standard gauge calibrated as per manufacturer’s standards without shoes by standing on a height measurement scale stadiometer. Commercially available electronic weighing machine (TCS-200-RT, China) calibrated as per manufacturer’s standards without shoes by standing on a height measurement scale stadiometer. Commercially available electronic weighing machine (TCS-200-RT, China) calibrated as per manufacturer’s standards were used for the weight measurement and BMI was calculated as Weight/Height². BMI was categorized according to the World Health Organization definition: BMI <18.5 kg/m² - Underweight, BMI 18.5-24.9 kg/m² - Normal weight, BMI 25.0-29.9 kg/m² - Pre-obesity, BMI 30.0-34.9 kg/m² - Obesity class I, BMI 35.0-39.9 kg/m² - Obesity class II, BMI Above 40 kg/m² - Obesity class III. Inclusion criteria included absence of illness, age > 18 years, and willingness to participate. Exclusion criteria included presence of any chronic diseases, cardiac disorders, respiratory disorders and pregnancy.

Six-Minute Walk Test

6MWT was performed according to ATS guidelines [1]. Walking corridor was 30 meters long. Turnaround point was marked with orange cones and chairs were placed at small interval distance in walkway. Participants were informed to avoid strenuous exercise two hours before test. Only a light meal was allowed before test. Participants were instructed to walk as long as they can during six minutes time limit. Vital signs, oxygen saturation and Borg Dyspnea Scale of were measured prior to starting test. Participants were informed to have a rest and sit on nearby chair if they experience any signs and symptoms such as dizziness, fatigue, leg cramps, chest pain or dyspnea and continue walking after feeling better. Time and distance were recorded as well as encouraging participant by saying “you are doing well; you have 3 min to complete the test”. Distance covered in 6 minutes was calculated and documented. After completion of 6 MWT, vital signs and Borg Dyspnea Scale were measured again. Metabolic Equivalent (MET) was calculated using conversion tables for estimating MET based on distance walked. Sample size calculated with 95% Confidence Interval was 119.

Statistical Analysis

Data was analyzed using SPSS software version 25.0 (SPSS, Inc., Chicago, IL). Descriptive data is expressed as a mean ± Standard Deviation (SD). Paired t test was performed for pre-post variables. Variables such as height, weight, age, BMI, oxygen saturation, heart rate and respiratory rate were analyzed with Pearson’s correlation. Regression was performed for 6 MWD, age, weight, height, and BMI. P ≤ 0.05 was considered statistically significant.

Results

Sixty-nine females were recruited. Mean age was 23.00 (1.67) years and BMI was 22.67 (4.10) (kg/m²). 6MWT mean distance covered was 403.43± 91.62 meters. MET was 2.81(0.76) ml/kg/min. Table 1 presents the characteristics of the participants. Table 2 presents 6MWT values before and after. Data shows that there is a significant difference in heart rate and respiratory rates, p<0.000, CI [-14.16- (-4.54)], [-5.45- (-2.63)] respectively. No statistically significant difference in systolic blood pressure, diastolic blood pressure, and SpO₂ was observed. Figure 1 illustrate the significant difference in the vital signs before and after the 6MWT. Percentage of Maximum Heart Rate (%mHR) achieved was 50.41(6.7)%. Table 3 presents Pearson correlation for variables collected during study with 6MWT distance. Figure 2 represents the relationship between 6MWT and other variables. Height and SpO₂ correlated well with 6MWT with significant statistical difference. 6MWD was calculated using reference equation by Alameri, H et al and is compared with measured 6MWD of present participants as seen in Table 4. No significant difference between the two studies was observed.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>N (69) Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years)</td>
<td>23.08 ± 2.02</td>
</tr>
<tr>
<td>Height (Meters)</td>
<td>1.58 ± 0.05</td>
</tr>
<tr>
<td>Weight (Kg)</td>
<td>58.36 ± 12.94</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.07± 4.64</td>
</tr>
</tbody>
</table>

Table 1: Characteristics of the participants.
Table 2: Six Minute walk test parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>N (69) Mean ± SD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6MWD in meters</td>
<td>403.43 ± 91.62</td>
<td></td>
</tr>
<tr>
<td>MET (ml/kg/min)</td>
<td>2.81 ± 0.76</td>
<td></td>
</tr>
<tr>
<td>Baseline BP Syst in mm Hg</td>
<td>117.92±15.08</td>
<td>0.30</td>
</tr>
<tr>
<td>Post 6MWT BP Sys in mm Hg</td>
<td>119.60 ± 13.49</td>
<td></td>
</tr>
<tr>
<td>Baseline BP Diast in mm Hg</td>
<td>75.96 ±11.36</td>
<td>0.051</td>
</tr>
<tr>
<td>Post 6MWT BP Dias in mm Hg</td>
<td>78.61 ± 9.39</td>
<td></td>
</tr>
<tr>
<td>Baseline HR in Beats per minute</td>
<td>89.25 ± 13.50</td>
<td>0.000</td>
</tr>
<tr>
<td>Post 6MWT HR HR in Beats per minute</td>
<td>99.20±13.29</td>
<td></td>
</tr>
<tr>
<td>Baseline SPO₂ in %</td>
<td>97.75±2.71</td>
<td>0.345</td>
</tr>
<tr>
<td>Post 6MWT SPO₂ in %</td>
<td>96.46 ± 10.99</td>
<td></td>
</tr>
<tr>
<td>Pre RR in Breaths per minute</td>
<td>18.65 ± 3.93</td>
<td>0.000</td>
</tr>
<tr>
<td>Post RR in Breaths per minute</td>
<td>22.55± 13.29</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Univariate correlation coefficients for 6MWT.

<table>
<thead>
<tr>
<th>Variable</th>
<th>r value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years)</td>
<td>-0.11</td>
<td>NS</td>
</tr>
<tr>
<td>Height (Meters)</td>
<td>0.368*</td>
<td>0.02</td>
</tr>
<tr>
<td>Weight (Kg)</td>
<td>-0.152</td>
<td>NS</td>
</tr>
<tr>
<td>BMI (Kg/m²)</td>
<td>-0.17</td>
<td>NS</td>
</tr>
<tr>
<td>Baseline BP Systolic (mm Hg)</td>
<td>-0.15</td>
<td>NS</td>
</tr>
<tr>
<td>Post 6MWT BP Systolic (mm Hg)</td>
<td>-0.02</td>
<td>NS</td>
</tr>
<tr>
<td>Baseline DBP (mm Hg)</td>
<td>-0.17</td>
<td>NS</td>
</tr>
<tr>
<td>Post 6MWT DBP (mm Hg)</td>
<td>0.15</td>
<td>NS</td>
</tr>
</tbody>
</table>

Figure 1: Vital Signs before and after 6 minute walk test.

Figure 2: Relation between 6MWD with age, weight, height and BMI.

Table 4: Comparison with reference equation.

<table>
<thead>
<tr>
<th>6MWD predicted [4]</th>
<th>Mean ± SD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>412± 93.67</td>
<td>0.276</td>
<td></td>
</tr>
<tr>
<td>6MWD measured</td>
<td>403 ± 91.62</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

Present study is considered one of a few studies that have evaluated 6MWT in female Saudi Arabia population with age group 18-30 years. Current study shows that 6MWD among this population is 403.43 (91.62) meters. This is shorter than other normal reference value of different ethnic population [5,24-26]. Furthermore, findings show that age is negatively correlated with 6MWD but is not statistically significant. Small sample size could be a contributing factor. On the other hand, height is statistically significant and correlated well with 6MWD. In contrast, there was a negative correlation between BMI and 6MWD. Moreover, there was a significant difference between the HR and RR before and after the 6 MWT. This could be attributed to cardiopulmonary effects of the 6MWT. Study result is on agreement with previously published similar investigations. 6 MWD is comparable with the available...
reference equation for Saudi Arabia population [4]. However, in
correlation to other ethnic groups such as Caucasian and Asian
population, present 6MWD is less than other ethnic groups.
Thus, present data strongly suggest that using Caucasian or Asian
population reference values would lead to an overestimation among
female Saudi Arabia population with age group 18-30 years [27].

Differences may be caused by differences in anthropometric
factors; demographic data; race and the level of physical activity.
Low physical activity or physical inactivity has been reported in
literature in oil producing Arab countries such as Bahrain, Kuwait,
Oman, Qatar, Saudi Arabia, and the United Arab Emirates [28],
which accounts for increased mortality and morbidity. In Saudi
Arabia, physical activity is found to be 6.1% in male and 1.9%
in female; respectively [29]. Our participants reached a maximum
percentage HR (%maxHR) of 50.41 ± 6.7% of their maximum
predicted HR. Chetta A et al reported 67 ± 10% of their maximal
predicted heart rate in their study6 which is higher than our
observation. Participants in Alameri et al study reached %maxHR
of 47% which is lesser than our observation. Participants studied
by Zou et al reached an average %maxHR of 59% which is close
to our findings. Limitations of this study include: first; we did not
include individuals more than the age of 30 so results cannot be
generalized for age group other than 18-30 years. Second, small
sample size. Third; present investigation was conducted in a
female college cohort group. Therefore, male participants were
not recruited.

Conclusion

6MWD among female Saudi Arabia with ages between 18-30
years is 403.43 (91.62) meters. Height was found to be positively
correlated with 6MWD. A large multicentre study is required to
confirm the present data and to include a larger age scale.

References

1. ATS Committee on Proficiency Standards for Clinical Pulmonary
Function Laboratories (2002) ATS statement: guidelines for the six-
minute walk test. Am J Respir Crit Care Med 166: 111-117.
systematic overview of the measurement properties of functional
walk tests used in the cardiorespiratory domain. Chest 119: 256-270.
Two-, six-, and 12-minute walking tests in respiratory disease. BMJ
284: 1607-1608.
a healthy adult Arab population. Respiratory Medicine 103: 1041-1046.
5. Rahman SAA and Alnegimshi AA (2014) Normative values of six-
minute walk distance for healthy Saudi girls. World Appl Sci J 32:
1721-1730.
Equations for the Six-Minute Walk Distance in the Healthy Chinese
values for the 6-min walk test in healthy subjects 20-50 years old.
Respir Med 100: 1573-1578.
for a multiple repetition 6-minute walk test in healthy adults older than
Reference values for the 6-minutes walking test in healthy subjects
six-minute walk test and body weight-mile distance product in healthy
11. Singh SJ, Puhan MA, Andrianopoulos V, Hernandes NA, Mitchell KE,
et al. (2014) An official systematic review of the European Respiratory
Society/American Thoracic Society: measurement properties of field
walking tests in chronic respiratory disease. Eur Respir J 44: 1447-
1478.
al. (2011) The 6-min walk distance in healthy subjects: reference
the performance of healthy adults on field walking tests. J Bras
The 6-min walk test: responses in healthy Canadians aged 45 to 85
6-minute walk distance in healthy North Africans older than 40 years:
Regression equations to predict 6-minute walk distance in middle-
minute walk test: which predictive values to apply for Tunisian subjects
Six-minute walk distance in healthy subjects aged 55-75 years. Respir
walk distance in healthy Singaporean adults cannot be predicted by using
reference equations derived from Caucasian populations. Respirology
11: 211-216.
for a multiple repetition 6-minute walk test in healthy adults older than
(2003) The 6-min walk test: a quick measure of functional status in

