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Abstract
Artificial Intelligence (AI) has evolved rapidly the last few years and has passed from experiments to implementation period 

even in medicine. Progress in neural networks and theories, the accessibility of large datasets and advances in computing power 
have assist to new achievements in present AI applications. With the help of Machine Learning (ML), computers can discover 
models from large and puzzling dataset automatically and as result can predict outcomes with high accuracy. It looks like AI 
can play a crucial role in healthcare and improve the performance of Assisted Reproductive Technology (ART). At the current 
situation, a variety of challenges are creating questions about AI. It is obvious though, that it will direct the different fields of 
medicine in further development and improvement. This review is presenting the existing use of automation at some aspects of 
ART and also improvements that can be produced through that approach. 
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Introduction
Women between 20-44 years of age will face Infertility 

issues between 8-12%  worldwide [1,2]. Around nine million 
babies have been born through Assisted Reproductive Technology 
(ART). Evidence of its safety and efficiency. However, live birth 
rates in the UK or US have been only marginally improved 
over the last decade, thus there is space for improvement in 
reproductive medicine [3,4]. In our days, everything is going 
digital and it is estimated that once automation will be widely 
implemented at ART, efficiency and consistency will be improved. 
Automation allows tasks that usually are performed by humans 
to be implemented by a computerised system [5]. It is mainly In 
robotic systems and microfluidics. Artificial Intelligence (AI) on 
the other hand can provide support automatically, by incorporating 
memory through learning and can be trained to perform actions 
without human interaction. Classification of AI though can be 
tricky because of vagueness of the term; however, it can be broadly 
divided into three types based on its capability to perform different 
things: narrow, general, and strong AI [6]. At the moment we have 

achieved only narrow AI, the lowest level of AI [7]. By the term 
AI machine learning (ML) and natural language processing (NLP) 
are included. The systems can learn from input data or understand 
human language, without being programmed specifically to do that. 
At present, there has been a transaction from traditional machine 
learning approaches (e.g., logistic regression, random forest) to 
more robust deep learning algorithms, such as artificial neural net- 
works (ANN), convolutional neural networks (CNN), and more 
recently transformer neural network (TNN) [7]. Deep learning 
is based on the analysis of larger data sets with an increasingly 
diminished need for human involvement and interpretation [8]. It 
is possible that AI will be probable revolutionising ART success 
rates into different key steps, since we are using larger data set. 

In the early 1990s, the web was built using static information, 
with no way for users to change data. In Assisted Reproductive 
Technology (ART), data were collected by using paper-based 
methodologies; or the phone to communicate with patients, letters 
to patients and also communicates its content with newspapers 
or TV. In the late 1990s, Web 2.0 involved a switch into a more 
interactive and dynamic experience through server-side processing 
forms, data- bases, and social media. Web 2.0 was less about the 
information and more about the interaction. Fertility clinics started 
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to use electronic medical records and swapping communication 
to other type of media like LinkedIn, Instagram, Facebook, 
Twitter and TikTok. The complexity of data gathered increased 
by using more digitization found in electronic witnessing, digital 
and continuous quality control, genetic testing, and time-lapse 
systems. Even we are at the time of big data, it is still difficult to 
find effective and consistent algorithms, able for to make decisions 
by themselves. Artificial intelligence (AI) seemed perfectly suited 
to resolve the challenges brought on by Big Data. The increased 
number of publications in the past couple of years demonstrates 
the promising capabilities of AI to bring more consistency and 
efficacy to ART [9].

Web 3.0 is the next generation of internet technology that 
relies on the use of AI to process data and create a personalized 
user experience, improving peer-to-peer technologies, virtual 
reality, internet of things (IoT). All this data can be opened and 
decentralized. As result, all users will be the owners of their data. 
Appointments with experts can take place virtually, the same as 
many parts of fertility treatment. Based on the fact that larger the 
information available, more metadata are that are being generated 
and made publicly available, Web 3.0 technologies (Machine 
Learning [ML], AI, IoT, natural language processing) will allow 
a new system to be developed based on the combination of that 
information. This information retrieval accessibility would 
represent an important advantage for the development of better 
personalized healthcare technologies, including matching patients 
to treatment plans and predicting fertility success rates [9]. This 
review is presenting the existing use of automation at some aspects 
of ART and also improvements that can be produced through that 
approach. 

Implentation of AI at Health System

There are significant challenges, when someone is trying 
to introduce an AI system into a clinical in vitro fertilization 
(IVF) laboratory workflow. If an ART clinic is still using paper 
charts, or there is no possibility to capture and store any digital 
image of patient’s embryos, the implementation of AI will take 
longer.  In addition, data management solutions to augment 
patient demographics, clinical and laboratory key performance 
indicators (KPIs), and other relevant data streams (ultrasound 
images and preimplantation genetic testing results, competency 
assessments) into a single dashboard are lacking. Most studies on 
predicting pregnancy outcomes after ART techniques, deal with 
the lack of prospective data. Images of blastocysts before biopsy 
and cryopreservation are stored the most. The culture conditions 
of the laboratory, technical competency of the operator [10,11], 
embryo quality, and/or expansion post-thaw are not analyzed in 
models that use clinical pregnancy as an end point, despite being 

dependent on them. An additional issue can be the fact of diversity 
between parameters used in different clinics. Some clinics can 
capture blastocysts images at 110 hours, but some others just 
before freezing, depending on embryos development speed. This 
is the reason why is necessary to set an exact time for the images 
to be captured or to create an AI system that doesn’t need this 
variability and is based also on data from other clinics.

Soon, AI will access multiple sources of data to reveal 
patterns in diagnosis, treatment, and results. Big data will offer 
the possibility at AI systems to predict patient’s risk and develop 
more personalised treatments. These systems potential will allow 
the prediction of pregnancy complications. It will also be more 
suitable at anticipating complications during pregnancy, perhaps 
identifying patients at high risk better than currently feasible. 
Artificial intelligence will also reduce ‘‘time to pregnancy’’ and 
improve efficiency, which is the time it takes to perform certain 
tasks or reduce embryo waste. The most powerful use of AI is 
to enhance hu- man capabilities, minimize variability, improve 
precision, and speed, and not to replace them. The impact of AI 
will be most visible using natural language processing and ML. AI 
can cover different areas, like clinicians, patients, administration. 
Using these systems, patient engagement in their care will be 
enhanced and streamlined. In every day clinic practice is necessary 
to discover before implenattion of AI, if it is worthy. What can be 
the benefits in process of embryos selection for example, rather 
than the traditional approach. It will also be necessary to purchase 
a new software system and make a notable investment, which is not 
sure if it is valuable or not. AI needs training and to do that, realistic 
datasets are necessary, that reflect the existed diversity and decrease 
the risk of bias. Taking that into consideration, more embryos 
should be included and not only these that have been selected 
for transfer. AI systems apart from training need validation on 
independent datasets. AI implementation is depending on how fast 
ART clinics will involve digital transportation and standardization. 
Once this is practice, AI systems will be self- evolved through 
learning, revalidation and use of new data. Recently, the US Food 
and Drug Administration has expedited the approval of medical 
devices and therapies (39 as of July 2019) that use partially and/or 
fully independent AI-based systems [12]. 

AI  will improve outcome, by allowing less mistakes, being 
more efficient and more important without emotional factors. The 
main disadvantage of AI is the fact that human Is replaced by a 
machine, and possible some decisions made will be accompanied 
by lack of empathy. However, evidence show that human won’t 
be replaced, but supported to be more efficient and productive. 
Personal data associated with digital technologies, is a big concern 
and need to be addressed appropriately, especially once cloud 
service is in use. 
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AI - Quality Control and Assurance in the IVF labarotory

At the environment of IVF laboratories, the majority of 
the procedures has been made mainly manually. AI systems 
are aiming to decrease the burden and the subjectivity of in the 
labaroty. These systems will provide a more standardised model, 
independent on the technician or environment where it takes place 
and can interfere with the embryo.  The application of IoT ( Internet 
of things), like actuators, gadgets, appliances, or machines, 
that are programmed for certain applications provides the IVF 
laboratories the opportunity of  better monitoring and operating 
their facilities [13]. The IoT devices are most of the time of low-
cost, low-power electronics connected wirelessly to gather data or 
act on events in real-time. These environmental sensors, actuators, 
networks or software can be deployed for real-time monitoring of 
room temperature, humidity, volatile organic compounds, door 
open count, and so forth. A more advanced, experimental form 
of IoT is a something different called smart dust. Smart dust are 
nodes of multiple microelectromechanical systems, no more than 
a few millimetres wide, that can detect changes in light, position, 
acceleration, stress, pressure, humidity, sound, and vibration. 
These disposable sensors transmit in formation wirelessly with 
autonomous power to a central computer or a cloud where data 
are compiled, analyzed through algorithms, and-if required-can 
instruct other devices to respond.

The IoT devices are frequently connected to cloud-based 
applications to collect, store, retrieve, and analyse data [14]. 
At the moment, particular instruments at the laboratories are 
collecting high quality control data and upload this information 
at cloud-based infrastructure. These data contribute with having 
quality control parameters with a more subjective way and may 
soon offer the opportunity to be integrated with electronic health 
records and relate measured parameters to clinical outcomes. At 
a ART laboratory, is important to have a quality management 
system to assess staff competency. Once data collection is 
automated, embryologists’ performance will be tested, trends will 
be predicted, such as deterioration of implementation. As far as 
embryos concern, these systems will help to check the quality 
of embryos and other markers of developmental stages, and as 
result changes can be proved and done for optimal results [15]. 
We anticipate that AI systems will complete automatically these 
quality assurance processes, provide systemic, early detection 
of adverse outcomes, and identify clinically relevant patterns 
in pregnancy outcomes. Two abstracts of 2019  presented at the 
American Society for Reproductive Medicine were the first to 
spot the importance of the use of AI to monitor embryologists 
performing intracytoplasmic sperm injection in a clinical setting. 
The extremely low coefficient of variation between the manual and 
AI-based quality assurance assessment methods demonstrate the 
high accuracy of the automated AI system [14]. 

Embryo Culture Systems 

The implementation of advanced microscopy, robotics, 
microfluidics, computer science, automation, AI, and digitalization 
of manual processes open up new horizons at embryo culture 
systems. Robotic and microfluidic platforms can perform visual 
tracking of a single sperm, immobilization of sperm, aspiration 
of sperm with picolitres volume, and insertion of that sperm into 
an oocyte. Fertilization of mouse embryos and continuous culture 
on a single platform, as well as automated vitrification systems, 
hint at the promise of fully integrated robotic and automated work-
flows in human IVF laboratory [16-20]. Literature has shown that 
culture conditions for embryo culture will be improved if AI will 
be based on factors like temperature, pH, patients’ demographics. 
In the future embryo culture media may include therapeutic 
strategies, treating each embryo with their own media formulations 
composed of optimized energy sources, antioxidants, or growth 
factors [21,22].

Data Management 

Once medical records are digitalised, patients’ data sets 
can act as ‘big data’ within ART. A combination of AI with big 
data, presents a powerful and promising tool for data analysis that 
reduces the need for manual processing. Potential new predictive 
outcomes and markers for fertility will be identified [9]. When 
storage takes place on a central cloud database improves safety 
of information stored and also connectivity between medical 
centres [21]. Electronic witnessing systems and radio frequency 
identification (RFID) allows the automated patient identification. 
The widely used RI-witnessTM system (Research Instrument, 
CooperSurgical, Denmark) favors the passage from manual 
barcode identification, which involve at least two embryologists to 
confirm sample labelling, to automated RFID-based labelling. This 
decreases IVF workflow time, improves accuracy, and reduces risk 
of manual error including gamete mismatch [23]. However, errors 
are still possible because of the number of steps necessary when 
moving gametes/embryos between dishes; a recent advancement 
promises a unique AI embryo witnessing system utilizing CNN 
to track and successfully (100%) assign patient specific key to 
their fresh embryos, thereby allowing traceability at every micro-
movement, alongside eliminating mismatch between embryos of 
different origin [24]. It must be noted, however, that this algorithm 
was trained with fresh cleavage and blastocyst stage embryos, 
therefore, not yet applicable for use with frozen embryos. Moreover, 
the AI algorithm may require further systemic evaluation prior to 
routine clinical use. 

Patient Treatment Pathway 

Integration of AI in the very first steps of ART has allowed 
for a personalised medicine approach, especially in diagnosis 
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and decision-making process of patient stimulation protocol and 
dosing, as well as predictive modelling for success treatment. 
For example, an algorithm designed to predict live birth rates 
from patient Anti-MüLlerian Hormone (AMH) levels saw high 
predictive ability with low error rates [25,26]. Similarly, the 
PIVET algorithm, aimed to personalise recombinant follicle-
stimulating hormone (rFSH) dosing using input patient data such 
as BMI, age, and antral-follicle counts (AFC) [27]. Furthermore, 
an individualised rFSH dosing algorithm based on women’s AMH 
and body weight (Rekovelle®, Ferring Pharmaceuticals Ltd, UK) 
has been recently shown to reduce risk of Ovarian Hypestimulation 
Syndrome (OHSS) [28]. Such clinical application of prediction 
outcomes throughout the entirety of IVF has already been used 
and made commercially available through digital platforms such 
as Univfy® (Univfy Inc, USA). Similarly, many fertility units 
are developing patient-focused mobile applications, as result to 
produce clinically relevant ‘big data’ through the integration of 
intelligent algorithms. Their adaption will take time, as it happens 
with all innovative techniques. We need to be aware that the large 
range of data is a result of the training of an AI algorithm.

Oocyte Selection 

Oocyte selection is not included at the everyday clinical 
routine at an IVF centre. It is difficult to get the information about 
the quality or maturity of oocytes. IN addition, by selecting them 
only depending on morphological characteristics, potentially 
could reduce the number of oocytes available for use. Image-
trained CNN deep learning algorithms such as AIR-O (Artificial 
Intelligence Ranking system for Oocytes, IVF 2.0 Ltd., UK) [29], 
VIOLET (Future Fertility, Canada) promises to outperform skilled 
embryologists in accurately predicting fertilization and blastocyst 
development rate [30]. An AI system able to predict oocyte 
developmental potential will improve cases of social freezing 
and managing patient expectations or oocyte allocation strategies 
during egg-donation cycles. Potentially, it will also determine the 
effect of different stimulation protocols on oocyte quality. Even of 
it want be immediately a tool of de-selection of oocytes, due to the 
limited starting number of oocytes, improvement and incorporation 
of intelligent oocyte selection tools might play a role in generating 
and using of synthetic oocytes [31].

Semen Analysis and Preparation 

Male factor contributes to 50% of infertility cases, 80% of 
which are due to sperm motility [32]. This is why robust semen 
analysis ad preparation form is necessary for diagnosis and 
management of infertility. There is a computer-assisted sperm 
analysis systema (CASA), but recently an automated version of the 
same system CASAnova has been developed. It looks promising 
and accurate n classify alteration in sperm motility [33]. Scientists 
have also tried to perform semen analysis preparation for treatment 

automatically, by using microfluidics, an emerging technology in 
biomedicine that employs the use of minute volumes of solvents 
manipulated on a chamber or chip [34]. In addition, microfluidic 
chips give the opportunity to allow synthesis of mechanical 
barriers, which have been suggested to better imitate  natural 
barriers of female reproductive tract, reassuring that only normal in 
shape and gradually mobile sperm are isolated [35]. A microfluidic 
chamber will potentially give the opportunity of a non-invasive, 
highly-precise, and rapid means of performing semen preparation. 
In the same time, the risk of DNA damage will be reduced [36]. A 
relevant example is the FERTILE (Zymot) device (DxNow Inc., 
Gaithersburg, MD, USA). This single-use filtered chip, with inlet 
and outlet chambers, connected by a microfluidic channel helps 
to improve the selection of sperm with better motility and DNA 
Fragmentation Index [36]. With further integration of AI this 
partial automation, is possible to pass to full automation since a 
remodelling could optimise fluid flow and displacement further 
personalising the process. A close example is the AI and robotics-
powered microscopy system, the Mojo©-AISA (Mojo, Sweden), 
which promises to perform rapid analysis of raw semen samples 
within ten minutes, compared to the usual 30 min by trained 
andrologists. The system agrees with values of 2010 World Health 
Organization (WHO) semen analysis values. It is a way to make 
automated and standardised semen analysis, which is restricted 
by the different observers [29]. However, further clinical training 
of the CNN-based AI algorithm will be necessary to decreases 
the high false positive prediction rates, mainly when there is low 
samples’ concentration.  

Endometrial Evaluation for Personalised Embryo Transfer 

Molecular techniques have allowed detailed study of 
endometrial receptivity [37-40] resulting in a genomic diagnostic 
tool, Endometrial Receptivity Array (ERA)[41], and as result more 
personalised embryo transfer (pET). The ERA is based on the 
endometrial gene expression analysis, which, integrated with AI 
and its main goal Is to increase accuracy and reproducibility when 
compared with conventional histological analysis of endometrium 
[42]. Although ERA continues to be used clinically, there is 
conflicting evidence on its clinical benefit [43-48] and more 
prospective multicentral studies are necessary .

Preimplantation Genetic Testing and Metabolomics 

Pre- implantation genetic testing (PGT) is used widely in many 
IVF clinics, despite the conflicting evidence of the effectiveness on 
improving ART success rates [49-51]. This growing demand for 
PGT has led to the development of AI integrated platforms such as 
PGTaiSM (CooperSurgical, Denmark). It is a predictor algorithm 
that increases sensitivity, efficiency, and objectivity of PGT-
aneuploidy (PGT-A) sequencing data analysis by reducing human 
involvement in the process. Interestingly, to avoid the breach 
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of PGT-A altogether, a new AI algorithm has been developed, 
ERICA® (Embryo Ranking Intelligent Classification Algorithm). 
This is an image based system, that detects the embryo ploidy and 
also predicts the success rates independently of the developmental 
stage. ERICA® has been shown to be superior in its ability to 
predict blastocyst ploidy status and selection of embryos with best 
clinical outcome with a 92.5% success rate, when compared with 
trained embryologists [52]. Additionally, this dynamic ERICA® 
algorithm has recently been tested for its ability to be personalised 
according to individual clinic protocols and procedures [53] and a 
positive correlation has also been shown between lower ERICA® 
grades and chances of early miscarriage, independent of patient 
age [53]. However, further training of the algorithm is necessary 
with diverse data seta.A different less invasive technique to PGT-A 
(NIPGT) is able to test with accuracy the ploidy status by using 
cell-free DNA in culture system, with remarkable harmony to 
routine invasive trophectoderm biopsy [54]. In the same time, a 
non-invasive metabolomic method has been used to develop a 
predictive algorithm based on 60 potential biomarkers of embryo 
aneuploidy, found through spent culture media analysis. The 
algorithm showed a 97.5% accuracy rate in selecting aneuploid 
over euploid embryos [55]. This approach of using AI for non-
invasive embryo selection has been commercialised by the 
Overture© Metabolomics (Overture Life, USA). Additionally, 
Raman spectroscopy–based metabolic profiling combined with AI 
for ploidy prediction has also been demonstrated [56]. It is obvious 
that there is a range for embryo selection based on its ploidy status; 
what remains to be seen, is if and how we could take advantage 
of the combination of NIPGT and metabolomics through AI 
algorithms and how this will improve clinical outcomes, thus 
making them undeniably cost effective. 

Limitations and Clinical Feasibility 

Implementation of any novel technology is challenging. 
Despite the efforts to automate the steps of ART, there has 
been relatively small penetration into the clinic due to practical 
restrictions, ethical concerns, and importantly lack of further 
research and clinical trials. This review is emphasized on a 
prominent change in ART, about the more frequent use of a 
combination of self-acting and self-determined deep learning 
algorithms with higher computational ability. This will decrease 
human bias, even there is always a possibility of algorithmic bias. 
Every type of supervised learning is biased and potentially can 
interfere with the result of this process. A possible solution is the 
self-supervised learning approach, as this includes the adverse 
networks (AANNs)s, where in the same time another AI system 
is made to evaluate and surpass the original one.An example of 
AANNs successfully tested in the field of reproductive medicine 
was presented by Kanakasabapathy et. al., where they subjected 
an AANNs to evaluate embryos, sperm, and blood cells using 

a range of images from different image qualities [57]. Even the 
results of this study need to be evaluated, this is an interesting 
proposal about the use of AI systems in IVF. In a clinical setting, 
the safety and outcome of utilising a predictive algorithm based 
on what cannot be fully understood by a healthcare practitioner 
can be both questionable, thereby regular assessment of system’s 
performance is necessary [58]. Nowadays, AI is still an assisting 
tool, rather than a replacement, for embryologists and clinicians, 
and must only be implemented through well- designed researched 
processes. Moreover, a combination of an expert human, a machine, 
and a well-designed process is highly likely to outperform either 
machine or human, alone [59]; such combined approach may avoid 
the possibility of not being able to control the clinical decision-
making going against the native human nature of an experienced 
embryologist. 

One more flow limitation in practice is the effect on 
cost-effectiveness. For example, the semi- automated Gavi® 
cryopreservation system is much more costly compared to manual 
cryopreservation.  This is reflected in the poor clinical use of the 
system, where, despite this novel technique being available since 
2013, live birth rates were only recorded by 2017 in Europe [60]. 
Usability and integrability of many of these automated approaches 
are also limited in certain cases, such as the Gavi® system. This 
system operates with its own only consumables rather than existing 
consumables, further limiting its accessibility while also increasing 
its cost. Similarly, microfluidic approaches, can play an important 
role in semen analysis and preparation, but there are less viable in 
high-capacity laboratories, because of the fact that large volume 
of raw semen examination needs multiple chips. It is difficult to 
determine the safety and efficacy of AI systems, because of the 
lack of robust clinical evaluation through Randomised Control 
Trials (RCT). Further research is necessary. Data insufficiency, 
variability in data sets, and bias within individual studies, such as 
the long time between the conception of the idea of an RCT and 
the publication of results can be the reason of lack of quality in 
evidence [58]. 

Again, bias greatly limits transferability of study approaches 
between groups due to inter-clinic variation including  laboratory 
conditions and heterogeneous data points such as different input and 
output measures [61]. Data insufficiency, particularly prospective 
data, don’t allow the use of large and data sets in many of these 
studies. These issues reduces reliability and reproducibility of AI, 
which is essential prior to generalised clinical use [61]. There is 
no specific number about the size of data sets, so synthetic data 
has been suggested as a possible approach to the above limits, 
with concerns though [62]. As with many initial advancements 
and especially within IVF, ethical regulations must be addressed. 
With the high processing power of big data brought about using 
general processing units (GPUs) in AI, it is important to have 
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Health Insurance Portability and Accountability Act (HIPAA)–
compliant patient data protection software in place and perhaps 
the development and implementation of AI-driven defence 
mechanisms [62]. Furthermore, user transparency and responsible 
disclosure systems must also be in place prior to clinical use of AI 
systems [58]. 

Future of ART 

As we enter the era of Web 3.0, more and more new 
technologies are implemented in medical sciences, based on the 
integration of computer and biomedical sciences. The areas under 
study reviewed here together with future new areas of interest 
from other fields such a robotics and telesurgery [63] may change 
ART. Mixed reality (MR), is a combination of virtual reality (VR) 
and augmented reality (AR). It can be the answer to fully automate 
consultations with patients, something that is absolutely necessary 
especially at the era of global pandemics. Operative procedures 
such as embryo transfer may also be performed with mixed 
reality, the main benefit of which removes physical limitations of 
consultants to one clinic [64]. Synergy between microfluidics [65], 
AI, and robotics may indeed achieve a fully automated, intelligent, 
single-step device for the entirety IVF treatment pathway. This 
idea of ‘IVF in a box’ has been drafted by NaturaLife (Overture 
Life, USA), which currently offers three limited features including 
cryopreservation of oocytes and embryos and non-invasive testing 
of embryos. 

Conclusion 

In conclusion, it looks like the automation of ART will 
be soon a reality. Its role is not to replace the embryologists or 
practitioners involved, but to provide support and improvement. 
As result the role of embryologists will be developed differently, 
so from performing repetitive mechanical tasks to precise logical 
decision-making. Indeed, it would be interesting to see, if, 
clinical embryologists of present will be transformed to research 
embryologists in near future. AI in ART will help to standardise 
procedures, increase efficacy and accessibility. It is necessary 
though to think about the gap between research and clinical 
implementation of innovative technologies, before being able to 
generalised its use in ART.
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