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Abstract
Background: Diabetic Nephropathy (DN) is the leading cause of end-stage renal disease worldwide. Extensive studies have 
been performed to elucidate the underlying mechanisms of DN, which still need to be clarified. The identification of key 
biomarkers using integrated bioinformatics could provide a certain theoretical foundation for future research and provide 
experimental direction for subsequent experimental verification. 

Methods: GSE1009, GSE30528, and GSE96804 were downloaded from the Gene Expression Omnibus (GEO) database to 
screen Differentially Expressed Genes (DEGs) between normal renal tissue and DN renal tissue by using the limma package. 
Then, the Robust Rank Aggreg (RRA) method was used to integrate and analyze the three datasets to obtain integrated DEGs. 
Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were 
performed to determine the molecular mechanisms of integrated DEGs involved in the progression of DN. A Protein-Protein 
Interaction (PPI) network of integrated DEGs was constructed via the STRING database, PPI network visualization and module 
analyses were performed by using Cytoscape software, and the hub genes in the PPI network were selected by topological 
analysis. Finally, the Nephroseq v5 online platform was utilized to explore the correlation between hub genes and clinical 
features of DN 

Results: In total, 249 integrated DEGs, including 191 upregulated genes and 58 downregulated genes, were identified and 
enriched in pathways involved in several functions and expression pathways, such as extracellular matrix,complement and 
coagulation cascades, focal adhesion, ECM-receptor interactions, cytokine-cytokine receptor interaction, the renin-angiotensin 
system, and chemokine signaling pathways. The top 10 hub genes identified from the PPI network were ALB, FN1, VEGFA, 
IGF1, JUN, FOS, CTGF, C3, COL1A2, and CLU. In addition, a KEGG pathway analysis of the top 2 modules identified from 
the PPI network revealed that Module 1 was mainly involved in focal adhesion and ECM-receptor interactions, while Module 
2 was mainly involved in cytokine-cytokine receptor interactions, the chemokine signaling pathway, the Toll-like receptor 
signaling pathway, and the TGF-beta signaling pathway.Correlation and subgroup analyses of 10 hub genes and the clinical 
characteristics of DN indicated that ALB, FN1, VEGFA, IGF1, JUN, FOS, CTGF, C3, COL1A2, and CLU may participate in 
the development of DN.

Conclusions: The identification of hub genes may be a key biomarker for early DN diagnosis and targeted treatment.
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Introduction
Diabetic Nephropathy (DN) is one of the most serious 

microvascular complications and the leading cause of Chronic 
Kidney Disease (CKD) and End-Stage Renal Disease (ESRD) 
[1,2]. DN is characterized pathologically by progressive 
accumulation of extracellular matrix in the glomerular mesangium, 
basement membrane thickening, and glomerular hypertrophy, 
conditions that lead to glomerulosclerosis [3-7]. The International 
Diabetes Federation (IDF) estimated that in 2021, 537 million 
adults (20-79 years) were living with diabetes worldwide. This 
number is expected to increase to 643 million by 2030 and 783 
million by 2045 [8], of whom 40% will develop diabetic kidney 
disease [9]. The irreversible deterioration of DN eventually leads 
to glomerulosclerosis and renal failure. However, long-term 
dialysis or kidney transplantation treatment will result in large 
global economic and social burdens.Hemodynamic and metabolic 
factors are the main cause of the onset of DN [10,11]. Other risk 
factors, such as congregation of advanced glycation end-products 
(AGEs), Oxidative Stress (OS), and activation of Protein Kinase 
C (PKC), are also believed to be involved in the pathogenesis 
of diabetes and its related complications [12,13]. Additionally, 
various inflammatory factors, endoplasmic reticulum (ER) stress, 
cellular autophagy, and microRNAs can activate the process of DN 
[14-18]. Although strict control of blood sugar and blood pressure 
levels and inhibiting the RAS system to reduce albuminuria can 
delay the progression of DN [19,20], this treatment is not sufficient. 
DN is the result of multiple gene interactions, and the molecular 
mechanisms of DN remain poorly understood; its prognosis is 
poor, and therapy is very difficult [21,22]. Therefore, identifying 
key biomarkersfor the early detection, diagnosis, and treatment of 
DN is urgently needed.

In recent decades, microarray technology and bioinformatics 
have been widely used to screen biomarkers involved in disease 
progression, to obtain further insights into disease pathogenesis, 

and to elucidate the underlying molecular mechanisms of disease 
[23,24]. With the widespread application of genome transcriptome 
analysis, large-scale microarray data have been generated and 
can be acquired from public databases, such as Gene Expression 
Omnibus (GEO) [25]. Reanalyzing available public data can 
provide valuable clues for new research. To date, many studies 
have screened numerous Differentially Expressed Genes 
(DEGs) involved in DN [26-31]. However, the heterogeneity of 
experimental samples in independent studies and the application 
of different detection platforms and different processing methods 
can lead to inconsistent results.The Robust Rank Aggreg (RRA) 
method is suitable for comparing several sequenced gene lists 
based on the assumption that each gene in each dataset is randomly 
arranged [32]. If a gene with a higher ranking in all datasets has a 
lower p value, it is more likely to become a DEG. The RRA is a 
robust and easy-to-implement method, not strictly requiring the use 
of a certain subset of problems or requiring all data to be of high 
quality. The RRA algorithm can also handle variable gene content 
from different microarray platforms. Therefore, the integration 
of gene expression datasets from multiple databases using RRA 
can offer a better understanding of the molecular mechanisms of 
disease genes [33].

In this study, we reanalyzed three original microarray 
datasets, GSE1009, GSE30528, and GSE96804, from the GEO 
database. First, the DEGs between DN and normal glomerular 
samples were identified, and the RRA method was performed 
to integrate the results and obtain the integrated DEGs. Second, 
the integrated DEGs were subjected to functional enrichment 
analysis by using the DAVID database to explore the molecular 
mechanisms involved in DN. Finally, the hub genes were screened 
by PPI network analysis, and modules were mined from the PPI 
network. Furthermore, the correlations between hub genes and 
clinical features of DN were analyzed by using the Nephroseq 
v5 online platform to further explore the pathogenesis and 
pathophysiological and molecular mechanisms involved in DN. 
Our research aimed to identify key biomarkers that may contribute 
to the early diagnosis and therapy of DN. Our flowchart is shown 
in Figure 1.
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Figure 1: The whole framework based on an integration strategy of bioinformatics analysis.

Materials and Methods 
Gene Expression Data Preprocessing

The gene expression profiles ofGSE1009, GSE30528, and GSE96804 were downloaded from the GEO database (https://www.
ncbi.nlm.nih.gov/geo/) . The three datasets were tissue samples from glomeruli. GSE1009 contains 3 samples from controls and 3 
samples from DN patients. GSE30528 includes 13 samples from controls and 9 samples from DN patients.GSE30528 consists of 20 
control samples and 41 DN patient samples.

Degs Screening and Microarray Data Integration

We downloaded the series matrix TXT files and platform TXT files and used the limma package in R (v.3.6.0) language to process the 
gene expression data from the three datasets by performing quartile data normalization. The gene expression data of GSE1009 were 

https://www.ncbi.nlm.nih.gov/geo/) on the basis of platform of GPL8300, GPL571 and GPL17586, respectivley.
https://www.ncbi.nlm.nih.gov/geo/) on the basis of platform of GPL8300, GPL571 and GPL17586, respectivley.
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log2 transformed. DEGs were screened via the limma R package 
in each dataset. The settings of the thresholds were P value< 0.05 
and |log-Fold Change (FC)| > 1. the log FC of each gene in each 
dataset was calculated and sorted. Three genes listswere integrated 
using the RRA package (v.1.1),and the integrated upregulated and 
downregulated DEG lists were used for subsequent analysis.

Functional and Pathway Analysis of Degs

GO annotation and KEGG pathway enrichment analyses 
were performed using the DAVID 6.7 database to determine the 
potential functions of the integrated DEGs. The significant screening 
threshold was set as a P value< 0.05 for screening correlated GO 
terms and KEGG pathways.The DEG-KEGG pathway network 
was constructed and displayed by using Cytoscape (v.3.6.1).

PPI Network Construction and Analysis of Modules

To understand the relationships between different integrated 
DEGs, we analyzed the PPI network of integrated DEGs via the 
STRING 11.0 database. The hub genes in the PPI network were 
screened based on node degree by using Cytoscape. Module 
partitioning for the PPI network was performed using the Cytoscape 
MCODE plugin. The default parameters were as follows: degree 
cutoff ≥ 2, node score cutoff ≥ 0 2, K-core ≥ 2. The module KEGG 
pathway enrichment analyses were performed using DAVID 6.7.

Association Between Hub Genes and Clinical Features of DN 
and Statistical Analysis

Correlation and subgroup analyses between hub genes 
and clinical features of DN were performed using Nephroseq 
v5 to evaluate the potential effects of hub genes on DN. Pearson 
correlation analysis between hub genes and Glomerular Filtration 
Rate (GFR) and Serum Creatinine (Scr) in patients with DN was 
carried out. Unpaired Students’st test was used to compare the two 
groups. All tests were two-tailed, with a P value < 0.05 considered 
statistically significant. GraphPad Prism v 7.0 was used to perform 
statistical analyses. The insignificant results are not displayed.

Results
Data Preprocessing and DEG Screening

The datasets from GSE1009, GSE30528, and GSE96804were 
normalized, and the results are shown in Figure 2. The DEGs were 
screened using the limma R package (P < 0.05 and |log Fold Change 
(FC)| > 1). A total of 1231 DEGs were obtained from the GSE1009 
dataset, including 581 upregulated and 650 downregulated DEGs. 
A total of 345 DEGs were obtained from the GSE30528 dataset, 
including 99 upregulated and 246 downregulated DEGs. The 
GSE96804 dataset contained 617 DEGs, including 336 upregulated 
and 281 downregulated DEGs. TheDEGs of GSE1009, GSE30528, 
and GSE96804 are shown in Figure 3. The cluster heatmap of the 
top 100 DEGs from 3 different datasets is shown in Figure 4.
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Figure 2: Normalization of gene expression. (A-B) Normalization of the GSE1009 data set. (C-D) Normalization of the GSE30528 data 
set. (E-F) Normalization of the GSE96804 data set. Blue represents data before normalization, and red represents data afternormalization.
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Figure 3: Differentially expressed genes between the two groups of samples in each dataset. (A) GSE1009, (B) GSE30528, (C) 
GSE96804. The red dots represent the upregulated genes based on an P < 0.05 and | log fold change (FC)| > 1; the green dots represent 
the downregulated genes based on an P < 0.05 and | log fold change (FC)| > 1; the black spots represent genes with no significant 
difference inexpression.

Figure 4: Cluster heat map of the top 100 DEGs. (A) GSE1009, (B) GSE30528, (C) GSE96804. Red indicates relative upregulation 
of gene expression; green indicates the relative downregulation of gene expression; black indicates no significant change in gene 
expression; and gray indicates that the signal intensity is not high enough to detect.
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Identification of Integrated Degs 

DEGs among three different datasets were integrated by using the RRA method (P < 0.05 and |logFC| > 1). The RRA method 
is based on the assumption that each gene in each dataset is randomly arranged. If the gene ranks high in all datasets, the associated P 
value is lower, and the possibility of differential gene expression is greater. Through rank analysis, 249 integrated DEGs, consisting of 
58 upregulated genes and 191 downregulated genes, were identified by the RRA method. The top 20 upregulated genes and the top 20 
downregulated genes were mapped to a heatmap, as shown in Figure 5.

Figure 5: Log FC heatmap of each expression microarray. The abscissa represent the GEO IDs, the ordinate represents the gene name, 
the red represents log FC > 0, the green represents log FC < 0 and the value in the box represents the log FC value.
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GO Functional Enrichment Analysis of Degs

GO functional enrichment analysis of upregulated genes and downregulated genes was divided into Molecular Function (MF), 
Cellular Component (CC), and Biological Process (BP) to explore the molecular mechanisms of DEGs involved in the development 
of DN. The three GO results are shown in Figure 7 and Figure 8, and the top 5 most significantly enriched items for each part are 
summarized according to their P values in Table 1 and Table 2. The GO BP analysis revealed that these upregulated genes were mainly 
enriched in the immune response, inflammatory response, response to wounding, defense response, and cell surface receptor-linked 
signal transduction. The GO CC analysis for the upregulated DEGs showed that most were mainly concentrated in the extracellular 
region, extracellular region part, extracellular space, proteinaceous extracellular matrix, and extracellular matrix. The most upregulated 
DEGS revealed by the GO MF analysis were mainly involved in enzyme inhibitor activity, endopeptidase inhibitor activity, peptidase 
inhibitor activity, carbohydrate binding and cytokine activity (Figure 6A and Figure 7A). 

Figure 6: Top 15 enriched GO terms. (A) Upregulated DEGs with the top 15 enriched GO terms. (B) Downregulated DEGs with the 
top 15 enriched GO terms.

Figure 7: Distribution of integrated DEGs in DN for different GO-enriched functions. (A) Upregulated DEGs. (B) Downregulated 
DEGs.



Citation: Li Y, Wu D, Zhou Y, Wu M, Hao L, Zhao D (2022) Bioinformatics Facilitates the use of Microarrays to Identify Potential 
Markers in Diabetic Nephropathy. J Urol Ren Dis 07: 1294. DOI: 10.29011/2575-7903.001294.

9 Volume 07; Issue 11

J Urol Ren Dis, an open access journal
ISSN: 2575-7903

Figure 8: KEGG pathway enrichment analysis of the integrated DEGs.

Category Term Count P-value

BP immune response 13 3.60E-06

BP inflammatory response 10 1.75E-06

BP response to wounding 11 1.34E-05

BP defense response 11 4.79E-05

BP cell surface receptor linked signal 
transduction 13 0.02586

CC extracellular region 24 2.04E-08

CC extracellular region part 17 5.07E-08

CC extracellular space 14 2.98E-07

CC proteinaceous extracellular matrix 7 7.44E-04

CC extracellular matrix 7 0.001099

MF enzyme inhibitor activity 5 0.007045

MF endopeptidase inhibitor activity 4 0.008032

MF peptidase inhibitor activity 4 0.009301

MF carbohydrate binding 5 0.017667

MF cytokine activity 4 0.017824

Notes:BP, biological process.CC, cellular component.MF, molecular function

Table 1: Upregulated genes top 15 enriched GO terms.
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Category Term Count P-value

BP regulation of cell proliferation 23 8.21E-05

BP phosphate metabolic process 20 0.014594

BP phosphorus metabolic process 20 0.014594

BP cell surface receptor linked signal 
transduction 30 0.045569

BP intracellular signaling cascade 22 0.047253

CC extracellular region part 33 3.23E-08

CC extracellular space 26 2.49E-07

CC extracellular region 47 1.63E-06

CC plasma membrane part 39 0.005308

CC intrinsic to plasma membrane 25 0.00594

MF cytoskeletal protein binding 19 1.86E-05

MF growth factor activity 10 9.84E-05

MF actin binding 11 0.004366

MF carbohydrate binding 11 0.007678

MF protein dimerization activity 12 0.047603

Notes:BP, biological process.CC, cellular component. MF, molecular function

Table 2: Downregulated genes top 15 enriched GO terms.

The downregulated DEGs were mainly involved in theregulation of cell proliferation, phosphate metabolic processes, phosphorus 
metabolic processes, cell surface receptor-linked signal transduction, and intracellular signaling cascades. GO CC analysis revealed 
that these genes were mainly concentrated in the extracellular region part, extracellular space, extracellular space, plasma membrane 
part, and intrinsic to plasma membrane. GO MF analysis for the downregulated DEGsshowed that these genes were mainly enriched 
in cytoskeletal protein binding, endopeptidase inhibitor activity, actin binding, carbohydrate binding and protein dimerization activity 
(Figure 6B and Figure 7B).

KEGG Pathway Analysis of Degs

KEGG pathway analysis of the integrated DEGs showed that these genes wereenriched in a total of 6 pathways (P<0.05), including 
the complement and coagulation cascades, focal adhesion, ECM-receptor interaction, cytokine-cytokine receptor interaction, renin-
angiotensin system, and chemokine signaling pathways (Figure 8). The DEG-KEGG pathway network was visualized with Cytoscape, 
as shown in Figure 9. The results indicate that DEGs may participate in the progression and development of DN by regulating these 
pathways.
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Figure 9: Network map of enriched pathways. Blue represents the pathways, red represents the upregulated genes and green represents 
the downregulated genes.

Construction of Protein-Protein Interaction (PPI) Network and Module Analysis

The 249 integrated DEGs were analyzed, and a PPI network was constructed. The network was displayed and analyzed using 
Cytoscape. The top 10 hub genes were identified based on degree values (Table 3). Moreover, 9 modules were obtained in the PPI 
network by using MCODE, and the 2 most important modules were selected according to the score (Figure 10). The 2 modules were 
subjected to KEGG pathway enrichment analysis in the DAVID database (Table 4). Module 1 was mainly enriched in focal adhesion 
and ECM-receptor interactions, and module 2 was mainly enriched in cytokine-cytokine receptor interactions, the chemokine signaling 
pathway, the Toll-like receptor signaling pathway and the TGF-beta signaling pathway.

Gene symbol Gene description LogFC Degree

ALB Albumin -1.30 53

FN1 Fibronectin 1 1.43 50

VEGFA Vascular Endothelial Growth Factor A -1.52 49

IGF1 Insulin Like Growth Factor 1 -1.14 32

JUN Jun Proto-Oncogene, AP-1 Transcription Factor Subunit -1.09 27

FOS FosProto-Oncogene, AP-1 Transcription Factor Subunit -1.54 25

CTGF Connective Tissue Growth Factor -1.40 25

C3 Complement C3 1.43 21

COL1A2 Collagen Type I Alpha 2 Chain 1.12 20

CLU Clusterin 1.18 20

Note: FC, fold change

Table 3: The degree values of the top 10 hub genes.
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Module Pathway Count P-value Genes

Module1
Focal adhesion 5 4.1E-3 COL6A3, VEGFA, IGF1, THBS2, FN1

ECM-receptor interaction 4 3.2E-3 COL6A3, THBS2, SDC2, FN1

Module2

Cytokine-cytokine receptor 
interaction 7 6.00E-05 BMP2, CCL21, CCL19, CXCL6, CXCL11, BMP7, CXCL10

Chemokine signaling pathway 6 1.40E-04 ADCY7, CCL21, CCL19, CXCL6, CXCL11, CXCL10

Toll-like receptor signaling pathway 4 2.90E-03 FOS, JUN, CXCL11, CXCL10

TGF-beta signaling pathway 3 2.60E-02 BMP2, BMP7, THBS1

Table 4: KEGG enrichment of genes in the top 2 modules.

Figure 10: PPI network of module 1 and module 2. The cycles represent genes, lines represent interactions between gene-encoded 
proteins.

Association Between The Hub Genes And Clinical Features Of DN

We examined the differential expression of hub genes between DN patients and healthy living donors using Nephroseq v5 
(Figure 11). The expression levels of C3, CLU, COL1A2, and FN1were elevated (Figure 12A‐D), while the expression levels of 
FOS, IGF1, ALB, VEGFA, JUN and CTGF were decreased in DN renal tissues compared with healthy kidney tissues (Figure 11E‐J). 
The correlation between the hub genes and the GFR of DN patients was analyzed (Figure 12). The expression levels of C3, COL1A2, 
FN1, CLU, and JUN were negatively correlated with GFR in DN renal tissues (Figure 12A‐E), suggesting that these genes may 
contribute to the occurrence and progression of DN. Nonetheless, the expression levels of VEGFA, ALB, CTGF, FOS, and IGF1 were 
positively correlated with GFR (Figure 12F‐J), suggesting that they may contribute to the maintenance and improvement of renal 
function. In addition, the correlation between hub genes and Scr in DN patients was determined (Figure 11). The expression levels of 
C3, CLU, COL1A2, IGF1, and JUN were positively correlated with Scr in DN renal tissues (Figure 13A-E), whereas that of VEGFA 
was negatively associated with Scr (Figure 13F). Therefore, the expression changes of these six genes may result in the occurrence and 
development of DN.
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Figure 11: The different expression of hub genes in DN renal tissues and healthy kidney tissues. (A) The expression of C3 increased in 
DN renal tissues. (B) The expression of CLU increased in DN renal tissues. (C) The expression of COL1A2 upregulated in DN renal 
tissues. (D) The expression of FN1 upregulated in DN renal tissues. (E) The expression of FOS decreased in DN renal tissues. (F) The 
expression of IGF1 decreased in DN renal tissues. (G) The expression of JUN decreased in DN renal tissues. (H) The expression of 
VEGFA decreased in DN renal tissues. (I) The expression of ALB downregulated in DN renal tissues. (J) The expression of CTGF 
downregulated in DN renal tissues.
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Figure 12: Association between the expression of hub genes and GFR in DN patients. (A) The expression of C3 was negatively 
correlated with GFR (P < 0:046, r = -0:611). (B) The expression of COL1A2 was negatively correlated with GFR (P = 0:017, r = -0:800). 
(C) The expression of FN1 was negatively correlated with GFR (P = 0:030, r = -0:755). (D) The expression of CLU was negatively 
correlated with GFR (P = 0:001, r = -0:639). (E) The expression of JUN was negatively correlated with GFR (P = 0:009, r = -0:740). 
(F) The expression of VEGFA was positively correlated with GFR (P < 0:036, r = 0:666). (G) The expression of ALB was positively 
correlated with GFR (P = 0:009, r = 0:771). (H) The expression of CTGF was positively correlated with GFR (P = 3.49e-4, r = 0:693). (I) 
The expression of FOS was positively correlated with GFR (P < 0:013, r = 0:746). (J) The expression of IGF1 was positively correlated 
with GFR (P = 0:046, r = 0:611).
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Figure 13: Association between the expression of hub genes and Scr in DN patients. (A) The expression of C3 positively correlated with 
Scr (P = 1:83e-4, r = 0:786). (B) The expression of CLU was positively correlated with Scr (P = 0:010, r = 0:607). (C) The expression of 
COL1A2 was positively correlated with Scr (P = 0:010, r = 0:607). (D) The expression of IGF1 was positively correlated with Scr (P = 
6:91e-4, r = 0:369). (E) The expression of JUN was positively correlated with Scr (P = 0:022, r = 0:679). (F) The expression of VEGFA 
was negatively correlated with Scr (P < 0:002, r = -0:684).
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Discussion
Diabetic Nephropathy (DN) is one of the major 

microvasculature components of diabetes mellitus; it is the 
result of multiple gene interactions and involves a multitude 
of different pathways. In this study, GO enrichment analysis 
revealedthat the integrated DEGs were involved in the immune 
response, inflammatory response, extracellular region, cytokine 
activity, and growth factor activity, which are associated with 
fibrosis and inflammation in DN [34,35]. The KEGG pathway 
analysis revealed that integrated DEGs were mainly enriched in 
the following top five pathways: complement and coagulation 
cascades, focal adhesion, ECM-receptor interaction, cytokine-
cytokine receptor interactions and the Renin-Angiotensin System 
(RAS). The complement system is an important differentially 
regulated pathway in DN glomeruli. Previous studies have shown 
that the complement system participates in the pathogenesis of 
DN and may be a therapeutic target [36,37]. Additionally, several 
studies have demonstrated that activation of the complement 
system is a vital cause of renal injury in DN [38,39]. ECM-receptor 
interaction has been proven to have a considerable contribution to 
the development of DN [40,41]. Activation of RAS is one major 
cause of renal injury in DN, and RAS dysregulation has been 
verified to be involved in the inflammatory process of DN [42]. 
The cytokine-cytokine receptor interaction pathway isrelated to 
the inflammatory reaction process, and the focal adhesion pathway 
is closely related to immunologicalstress. Inflammatory reactions 
and immunization arerelated to the occurrence and development 
of DN [43,44].

 We also constructed PPI networks with 249 integrated 
DEGs and identified the following 10 hub genes: ALB, FN1, 
VEGFA, IGF1, JUN, FOS, CTGF, C3, COL1A2, and CLU.We 
performed correlation and subgroup analyses among the hub genes 
and clinical features of DN by using Nephroseq v5.Among these 
genes, the Albumin (ALB) gene encodes Human Serum Albumin 
(HSA). HSA is a multifunctional protein that has antioxidant and 
anti-inflammatory properties and can combine with endocrine 
compounds and drugs [45]. HSA levels were negatively correlated 
with urinary protein content [46]. A study conducted by Taguchi 
et al. showed that the HSA dimer can function as a plasma-
retaining agent of fatty acid-conjugated antidiabetic drugs in 
diabetic nephropathy [47], but the correlation between HSA and 
DN has not yet been illustrated. We found that ALB expression 
was decreased in DN renal samples compared with healthy renal 
samples and was positively correlated with GFR (P = 0:009, r = 
0:771). FN1 and CTGF have emerged as potent proinflammatory 
and profibrotic regulators. It has been reported that FN1 plays 
crucial roles in the progression of renal fibrosis to DN [48,49], 
and is significantly upregulated in the glomeruli of both DN 
patients and mice [50]. We found that FN1 expression was higher 
in DN renal samples and was negatively correlated with GFR (P 
= 0:001, r = -0:639).CTGF has emerged as a potential biomarker 

and therapeutic target of DN [51,52]. The progression of DN can 
be delayed by inhibiting CTGF expression [53]. We found that 
CTGF expression was downregulated in DN renal tissues and was 
positively correlated with GFR (P = 3.49e-4, r = 0:693).VEGFA 
is the most important vascular endothelial growth factor. VEGFA 
is mainly expressed in glomerular podocytes and tubular cells, 
and the mRNA and protein expression levels of VEGFA were 
significantly downregulated in human renal biopsy specimens 
with DN [54]. We found that VEGFA expression was decreased 
in DN renal tissues, was positively correlated with GFR (P < 
0:036, r = 0:666), and was negatively correlated with Scr (P < 
0:002, r = -0:684). In addition, studies have shown thatVEGFA 
could serve as a biomarker to identify the progression of DN 
[55-57]. COL1A2, a fibril-forming collagen that is upregulated 
in kidney tissues, reflects a higher degree of renal fibrosis in DN 
[58]. We found that COL1A2 expression was upregulatedin DN 
renal tissues, was negatively correlated with GFR (P = 0:017, r 
= -0:800), and was positively correlated with Scr (P = 0:010, r 
= 0:607).CLUis a glycoprotein that is expressed in many tissues, 
including the kidney [59]. He et al. found that glomerular CLU is 
upregulated in both patients with DN and streptozotocin-induced 
diabetic mice, and overexpressing CLU may protect against 
oxidative stress-induced apoptosis in podocytes [60]. Moreover, 
CLU may delay or even halt the progression of DN by modulating 
Akt-related pathways [61,62]. We found that cl u expression was 
increased in DN renal tissues, was negatively correlated with GFR 
(P = 0:001, r = -0:639), and was positively correlated with Scr (P = 
0:010, r = 0:607).C3 plays an important rolein the complementary 
systemand is elevated in DN glomerular injury in DN [63]. 
Moreover, it has been reported to mediate renalinjury [38]. We 
found that C3 expression was increased in DN renal tissues, was 
negatively correlated with GFR (P < 0:046, r = -0:611), and was 
positively correlated with Scr (P = 1:83e-4, r = 0:786). IGF1 is a 
peptide growth factor. Both IGF1 and IGF1 receptors may play 
key roles in the development of DN by mediating cell growth and 
apoptosis [64,65]. Brittain et al.found thatIGF1 is downregulated 
in the kidneys of humans with CKD and rodents with DN [66]. 
We found that IGF1 expression was decreased in DN renal tissues, 
was positively correlated with GFR (P = 0:046, r = 0:611),and was 
positively correlated with Scr (P = 6:91e-4, r = 0:369). JUN(c-jun) 
and FOS(c-fos) are major components of the AP-1 transcription 
factor. c-jun was progressively increased during renal fibrosis in 
DN [67]. The overexpression of c-fos and c-jun in Glomerular 
Mesangial Cells (GMCs) is an important pathologic feature of DN 
[68]. We found that FOS and JUN expression was decreased in 
DN renal tissues. The expression of JUN was negatively correlated 
with GFR (P = 0:009, r = -0:740) and was positively correlated with 
Scr (P = 0:022, r = 0:679). The expression of FOS was positively 
correlated with GFR (P < 0:013, r = 0:746). Furthermore, KEGG 
pathway analysis of modules 1 and 2 suggested that the occurrence 
and development of DN might be related to these pathways and that 
regulating the complement cascade, inflammatory reactions, and 
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immunological stress and inhibiting ECM-receptor interactions 
might be an effective treatment for DN

Conclusions
In summary, this study revealed that10 hub genes and 

their related pathways are closely related to the occurrence and 
development of DN, indicating that these10 hub genes may be 
regarded as key biomarkers in the diagnosis and treatment of 
DN. However, our results need to be verified by experiments 
because our study was conducted on the basis of data analysis. 
Simultaneously, the correlation between gene expression and 
clinical manifestations was analyzed, which may provide a novel 
perspective for the early diagnosis and targeted therapy of DN.
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