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Abstract
Background Cancer-associated fibroblasts (CAFs) are crucial for tumor microenvironment (TME) remodeling and correlated 

with tumor progression. Dynamic interactions between CAFs and tumor cells and immune cells in lung adenocarcinoma (LAC) 
are still not clear. Method The role of CAFs in LAC and potential novel mediators of their functions were investigated. Hallmark 
signals associated with CAFs and immune components in LAC were analyzed in cohorts from TCGA and GEO databases. These 
cohorts were analyzed by bioinformatic method with R and Bioconductor packages. Twenty LAC patients who were treated with 
anti-PD-1 drug were involved to evaluate their pathological response. Result Genes based on CAF markers in the literature were 
clustered and sieved in LAC to find representative biomarkers which reflect TME and predict the effect of immunotherapy. Most 
of the cancer hallmark signaling pathways were enriched in extracellular matrix organization-related GO terms. COL5A2 were 
upregulated in CAFs compared to normal tissue. The expression of COL5A2 as negatively correlated with CD8+ T cells. COL5A2 
indicated poor prognostic outcomes and might be correlated with the immunosuppressive tumor microenvironment (TME). LACs 
with COL5A2 overexpression had better clinical outcomes after anti-PD-1 inhibitor in twenty LAC with neoadjuvant therapy. 
Conclusion CAFs play an essential role in tumor progression and the TME. We identified an extracellular protein, COL5A2, as a 
prognostic marker and potential therapeutic target in LACs.
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Introduction
Lung cancer is the most common malignant tumor worldwide. 

Lung adenocarcinoma (LAC) is an important histological type 
in non-small cell lung cancer. Recently, the management of 
LAC and the understanding of its biology have been the subject 
of great progresses. Thus, different histological subtypes have 
been identified, characterized by distinct genetic and molecular 
alterations, corresponding to different pathways of oncogenesis, 
inhibited by targeted therapies. The World Health Organization 
classification, which was revised in 2021 distinguishes subtypes, 
including lepidic, acinar, papillary, micropapillary and solid LAC. 
Of these, micropapillary and solid LACs are regarded poorly 
differentiated and associated with poor prognosis [1]. Anti-
EGFR tyrosine kinase inhibitors (EGFR-TKI, such as Gefitinib 
and Ecotinib) and immunotherapies (such as nivolumab and 
ipilimumab) have successively led to a radical change in patient 
management and represent significant therapeutic options in 
the treatment of LAC [2, 3]. To further enhance the benefits of 
these treatments, different combinations, and sequences of TKI 
and immunotherapies are being investigated in clinical trials [3]. 
Patients who relapse on these therapies are left with very few 
options.

Tumor microenvironment (TME) is a complex ecosystem 
composed of tumor cells, infiltrating immune cells, and stromal 
cells intertwined with non-cellular components. The co-evolvement 
and dynamic interplay within and between these components 
shape the tumor’s distinct biology and influence its response to 
cancer therapies. Cancer-associated fibroblasts (CAFs) constitute 
vastly heterogenous stromal cells and are prominent components 
of the microenvironment in solid tumors. Functionally, CAFs can 
contribute to the malignant development and progression by diverse 
mechanisms, including supporting tumor cell growth by secreting 
growth factors, extracellular matrix remodeling, promoting 
angiogenesis, and by mediating tumor-promoting inflammation 
[4,5]. The crucial role of TME, which serves as the soil for seeds 
(cancer cells), has been proven in many studies [6-8]. Cells in the 
TME mainly include stromal cells and immune cells. Recently, 
increasing evidence has high-lighted that appropriate stromal cells 
are crucial for the development of tumors [9,10] Among them, 
CAFs represent the main fraction, and accumulating evidence has 
indicated their role in cancer proliferation, progression and invasion 
[4,11]. Although various clinical trials targeting CAFs have been 
performed in recent years, such as targeting surface markers, 
reducing CAF infiltration and normalizing CAF functions, most of 
them are still ongoing [4]. Previous studies have identified many 
CAF markers, but few of them have moved into clinical practice. 

This may be due to the internal heterogeneity of CAFs. The CAFs 
seemed to originate from diverse cell types, such as fibrocytes, 
stellate cells, endothelial cells, and mesenchymal stem cells [12]. 

It is well accepted that most activated fibroblasts are derived from 
fibroblasts of adjacent normal tissues and induced by oxidative 
stress or specific cytokines and chemokines from cancer cells 
[13]. Hence, distinct subclusters have been identified by previous 
studies. Therefore, focusing on the function and mechanism of 
fibroblasts in the tumor microenvironment may provide a strategy 
for LAC treatment, especially immunotherapy.

In this study, we explored the relative infiltration level of 
fibroblasts in LAC and the correlation between CAFs and immune 
components in the TME. We further explored upregulated secreted 
proteins, which could be used to predict CAF function in LAC. 
To establish the relevance of the role of fibroblasts and the 
upregulated protein in LAC using publicly available datasets and 
clinical samples raises the probability that targeting biomarkers 
may yield clinical utility.

Methods
Datasets and tissue specimens

The Cancer Genome Atlas (TCGA) dataset was obtained 
using the TCGA biolinks and analyzed by packages in R 
software. The transcripts per million (TPM) value was estimated 
at the transcript level. Patients who were diagnosed with LAC 
histologically and available for transcriptomic data were included. 
A total of 501 LAC patients were enrolled in the TCGA cohort. 
Overall survival (OS) was assessed using vital status and days from 
diagnosis to death or the last follow-up date. Only patients with 
active follow-up information were included in survival analysis. 
Patients diagnosed with LAC and available for active follow-up 
information were included. For other LAC datasets, GSE68465 
with the expression matrices were downloaded from the Gene 
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). 
The probes were mapped using the corresponding annotation 
platforms. The expression values were further normalized by the 
limma R package if necessary. The cell types were annotated using 
the Single R package if necessary. No identification information of 
participant was involved during download and analysis. 

Tissues for immunohistochemistry and primary cell 
isolation were obtained at Beijing chest hospital and Shanghai 
general hospital between January 2010 and June 2021. Informed 
consent was obtained from participants. The study was conducted 
according to the principles stated in the Declaration of Helsinki.

Molecular markers, CAF score and CAF clustering

Representative immune-related genes (IRGs) and CAF signatures 
included the T cell signature (IFNG1, STAT1, CXCL10, IDO1, 
CXCL9), Myeloid dendritic cells  (CD1A, CD1B, CD1E, 

https://www.ncbi.nlm.nih.gov/geo/
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CLEC10A, CLIC2), inhibitory immune ligands/receptors 
(HAVCR2, CTLA4, LAG3, PDCD1, CD274), immune modulators 
(ENTPD1, NT5E), T cells associated-immune receptors (CD28, 
CD3D, CD3G, CD5, CD6, CHRM3-AS2, CTLA4, FLT3LG, 
ICOS, MAL, MGC40069, PBX4, SIRPG, THEMIS, TNFRSF25, 
TRAT1, CD8B, CD8A, EOMES, FGFBP2, GNLY, KLRC3, 
KLRC4, KLRD1) were analyzed. CAF scoring was evaluated 
through Tumor Immune Dysfunction and Exclusion (TIDE, http://
tide.dfci.harvard.edu) based on tumor pre-treatment expression 
profiles, this TIDE module can estimate multiple published 
transcriptomic biomarkers to predict patient response. The edgeR 
and limma packages were used to calculate the fold change of 
genes between groups. Clustering was performed in individual 
datasets, and the samples were further classified into high-, 
medium-, and low-infiltration groups using the Complex Heatmap 
package. To further confirm the clustering results, the principal 
components analysis (PCA) method was applied as previously 
described. Inflammatory and myofibroblastic CAF features were 
also included to assess the internal characteristics. Comparisons 
of biological markers among different CAF infiltration groups are 
shown by the ggheatmap and Complex Heatmap packages.

Tumor microenvironment estimation

The Estimate the Proportion of Immune and Cancer cells 
(EPIC), xCell, and Microenvironment Cell Populations-counter 
(MCP-counter) algorithms were applied to calculate the cancer-
associated fibroblast scores in datasets [14,15]. To analyze the 
correlation among fibroblasts and immune cells, fractions of 22 
immune cells were estimated using the Cell-type Identification by 
Estimating Relative Subsets of RNA Transcripts (CIBERSORT) 
algorithm [16,17]. The estimation of stromal and immune cells 
in malignant tumor tissues using expression data (ESTIMATE) 
was applied to calculate the overall stromal and immune scores in 
cancer [18].

Functional analysis

The GSVA package was used for gene set variation analysis 
(GSVA) [19]. The GSVA results were compared between the 
high- and low-CAF infiltration groups and are displayed. Gene set 
enrichment analysis (GSEA) was used to explore the biological 
functions and performed using GSEA 4.1.0. Hallmark and gene 
ontology gene sets were obtained from the MSigDB Collections 
(http://www.gsea-msigdb.org/gsea).  

Immunohistochemistry

First, Formalin-fixed, paraffin-embedded tissue was cut into 
4-μm sections and mounted on glass slides and then were baked 
in a 63 °C oven for one hour. The tissues were de-vaxed and 
rehydrated with a sequential procedure: dimethylbenzene 15 min 
× 2 times; water-free alcohol, 7 min × 2 times; 90% alcohol, 7 min; 

80% alcohol, 7 min; 70% alcohol, 7 min; triple-rinsed with water 
for three minutes each time. Antigen recovery was performed for 5 
min in boiling citric acid solution. Next, the tissues were incubated 
in blocking solution (76.8% methanol and 7.2% H2O2) for 10 min, 
and then triple-rinsing with 1 × PBS for 5 min each time. Rabbit 
polyclonal COL5A2 antibody (OriGene) was diluted with Dako 
REAL™ Antibody Diluent (Dako S3022) at a ratio of 1:500 and 
incubated overnight in a humid container in a 4 °C refrigerator. 
Tissues were triple-rinsed with 1 × PBS for 5 min each time 
before a further incubation with Dako EnVision™+/HRP second 
antibody reagent (Dako SM802) for 30 min. The tissues were 
washed with PBS and stained with substrate 3,3ʹ-diaminobenzidine 
(DAB) (Dako EnVision™) DAB+ Chromogen (Dako DM827) 
in EnVision™ Substrate Buffer (Dako SM803) for 5 min. The 
nuclei were counterstained with Dako Hematoxylin. IHC staining 
was assessed by scores based on the percentage of positive cells 
(0: <5%; 1: 5%–25%; 2: 25%–50%; 3: 50%–75%; 4: >75%) 
multiplied by scores based on the intensity of staining, (0: 
colorless; 1: light yellow; 2: brown; 3: dark brown), with 6–12 
considered high expression and 0–4 considered low expression. 
The primary antibody against COL5A2 used in IHC testing was 
purchased from LifeSpan BioSciences, lnc (Seattle, WA, U.S.A.). 

Western blot

For LAC tumors, cells were laser captured from tumor 
bulks to isolate CAF, tumor cells as our former study [20]. These 
cells were lysed using RIPA buffer (Beyotime) at 4 °C directly.  
Phenylmethanesulfonyl fluoride (PMSF, Beyotime) was added 
to reduce protein degradation during extraction. Proteins were 
separated in SDS-polyacrylamide gels and transferred to PVDF 
membranes, and nonfat milk was used to block the nonspecific 
binding sites on the membrane. The membranes were incubated with 
primary antibodies against AKT1, COL5A2 (1:1000, Proteintech) 
and GAPDH (1:3000, SAB) at 4 °C overnight. The secondary 
antibody (1:5000, Bioss) was applied on the following day, and the 
reaction was detected using enhanced chemiluminescence solution 
(ECL, Affinity).

Pathologic Assessment of Response in LACs based on COL5A2 
in resected tumors after ICI therapy

Twenty LAC patients, 18 to 65 years of age, were then 
recruited for immune checkpoint inhibitor therapy (ICIT) by 
Camrelizumab. Tumor size and standardized uptake value at 
baseline were evaluated by Positron-emission tomography (PET) 
plus contrast-enhanced CT. These patients had histologically 
confirmed NSCLC (stage IB–IIIA, American Joint Committee 
on Cancer, 8th edition) that was surgically resectable. All patients 
had treatment-naive primary tumor and adequate organ function. 
Exclusion criteria include as previous study [21]. Operation was 
performed between day 26 and 41 after two cycles treatment 

http://www.gsea-msigdb.org/gsea
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of Camrelizumab (200 mg, intravenously, day 1 out of 22). All 
patients provided written informed consent for the use of their 
tumor specimens. Sufficient fresh specimens were used for the 
following assays. 

A standardized procedure was used to evaluate the 
percentages of (1) viable tumor, (2) necrosis, and (3) stroma 
(including inflammation and fibrosis).  The tumors with diameter 
< 3 cm were entirely sampled. If a tumor was larger than 3 cm, an 
approximately 0.5 cm thick cross-section of tumor was separated 
in its maximum dimension. True tumor bed consisted of viable 
tumor, necrosis and stroma which included both fibrosis and 
inflammation confined to the tumor bed.

The percentages of viable tumor, stromal tissue, and 
necrosis were estimated based on the microscopic sections. Each 
component was assessed in 10% increments unless the amount 
was less than 5%. A semi quantitative approach was done on the 
two stromal tissue components: fibrosis and inflammation. The 
final pathologic responses were determined based on the histologic 
features correlated with the gross findings.

Statistical methods

The best cutoff values for specific markers in each cohort 
were determined using the survminer package. The survival 
package was used for Kaplan-Meier overall survival analysis, and 
the log-rank test was applied for comparison. The hazard ratio (HR) 
was calculated via univariate Cox regression. Immune signatures 
were divided into two groups according to the median value and 
calculated by Cox regression in. Student’s t-test or Wilcoxon rank-
sum test were used for comparison of normally and non-normally 
distributed variables in unpaired groups, respectively. The paired 
Student’s t-test was performed for paired samples. Chi-square test 
and Fisher’s exact test were applied for comparison of clinical 
features. The Spearman method was applied for correlation 

analysis. All P values were two-tailed. Statistical analysis was 
performed using R software (Version 4.3.1, https://www.r-project.
org).

Results
CAF scores Are Correlated To A Poor Prognosis In LAC 

CAF scoring was evaluated through EPIC, xCell, MCPcounter 
R packages and Tumor Immune Dysfunction and Exclusion 
(TIDE) on 111 CAF-related genes from MCPcounter (Table 1). 
We hypothesized that CAFs remodel tumor microenvironment 
and promote tumor progression and influence the prognosis. To 
explore these possibilities, we correlated clinical data to the CAF 
scores based on the expression levels of CAF-related genes (Table 
1). 

These CAF scores were correlated with overall survivals in 
TCGA cohort by EPIC, MCPcounter, xCell and TIDE (Figure 1A-
C, OS, p=0.025, HR=1.456, 95% CI 1.048-2.025; p=0.022, HR= 
1.631, 95% CI 1.068-2.493; p=0.006, HR=1.55, 95% CI 1.129-
2.127, respectively). The stromal scores for TCGA cohort were 
also analyzed, but we found that patients with high stromal score 
had better prognosis than those with low stromal scores (Figure 
1D, p=0.004, HR=0.651, 95% CI 0.484-0.876). 

Similarly, the prognosis of patients from GSE68465 
correlated to CAFs were evaluated by xCell and TIDE, and found 
that the overall survival of patients with low-CAF scores had better 
prognoses than those with high-CAF scores by xCell analysis 
(Figure 1E, p= 0.022, HR= 1.644, 95% CI 1.069-2.529), but it was 
contradicted by TIDE analysis showing a better clinical outcome in 
patients with high-CAF scores than with low-CAF scores (Figure 
1F, p= 0.013, HR= 0.72, 95% CI 0.554-0.934). Patients with high 
stromal scores had better prognoses than those with low stromal 
scores (Fig. 1G, p=0.032, HR=0.73, 95% CI 0.546-0.974). It was 
consistent with that from TCGA cohorts.

https://www.r-project.org
https://www.r-project.org
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Figure 1: The expression levels of CAF-related genes were correlated with overall survivals in TCGA cohort by different analyses 
of EPIC, MCPcounter, xCell and TIDE. (A-C) the overall survivals of high- and low- CAF-associated genes expression groups from 
TCGA cohort were compared by EPIC, MCPcounter and TIDE. (D) the overall survivals of patients from TCGA with high- and low- 
stromal scores were analyzed. (E-F) the overall survivals of high- and low- CAF-associated genes expression groups from GSE68465 
were compared by xCell and TIDE. (G) the overall survivals of patients from GSE68465 with high- and low- stromal scores were 
analyzed. (H) Heatmap showed the results of correlation analyses of different modules for TCGA cohort. (I) Heatmap showed the results 
of correlation analyses of different modules for GSE68465 cohort.
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Functional Enrichment Analysis of CAF-Associated Differentially Expressed Genes in LACs of TCGA and GSE68465 
cohorts

The relative abundance of fibroblasts in LACs was estimated by expression profile clustering using classic CAF markers. The 
intersection analysis displayed by Venn plot of the common genes from TCGA and GSE68465. These genes were SPARC, GLT8D2, 
ANGPTL2, MMP2, COL6A3, AEBP1, INHBA, COL5A2, COL5A1, COL1A2, MXRA5, and THBS2 (Figure 2A). Results from 
gene ontology (GO) enrichment analysis indicated that the DEGs mapped to the extracellular matrix organization-related GO terms, 
such as extracellular structure organization, endodermal cell differentiation and collagen fibril organization (Figure 2B). The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis also displayed the enrichment of protein digestion and absorption 
and ECM-receptor interaction pathways (Figure 2C). Thus, the overall functions of DEGs seemed to map on extracellular matrix 
remodeling-related activities, which implied that the involvement of CAFs was a predominant feature of TME in LACs.

Figure 2: Common genes from TCGA and GEO cohorts and GO and KEGG analyses. (A) Venn plots showed common CAF-
associated genes from TCGA and GSE68465 cohorts. (B) Bubble GO analysis chart identified molecular functions with genes enriched 
in each module. (C) Bubble KEGG plot analysis identified cancer-related pathways with genes enriched in each module. 

Construction of a degenerated TME subtyping method by WGCNA-LASSO

To investigate effective biomarkers derived from CAFs and their corresponding prognostic value and to increase the accuracy 
and simplicity of the signature, WGCNA analysis was performed to divide the DEGs into different modules and the mostly prognosis-
related genes were clustered by lasso regression in each module. The purpose of this step was to enhance the orthogonality of the genes 
involved in the signature. Cluster analysis on gene expression of TCGA cohort by WGCNA and the result were shown in Figure 1H. 
The MEyellow group was mostly associated with CAF score and stromal score. Likely, the cluster analysis for GSE68465 cohort was 
explored and the result was shown in Figure 1I. The MEred group was significantly associated with CAF score and stromal scores.
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As shown in Figure 1H-I, these different modules were 
correlated with different microenvironmental factors and different 
clinical characteristics (Figs. 1A-G). Subsequently, we performed 
a Pearson’s correlation analysis on the prognostic genes. Based 
on these results, the genes that we selected exhibited different 
micro environmental statuses and a high orthogonality. Lastly, two 
modules from TCGA cohort and 9 modules from GSE68465 were 
selected for lasso regression, which included UNC5B, CALD1, 
FSTL1, LAMA4, PRRX1, SPARC, TIMP2, GLT8D2, THY1, 
ANGPTL2, OLFML2B, COL6A2, ADAMTS2, MMP14, FBN1, 
FAP, ANTXR1, ADAMTS12, MMP2, COL6A3, AEBP1, INHBA, 
COL5A2, COL5A1, COL1A2, COL15A1, POSTN, COL3A1, 
ITGA11, MXRA5, ADAM12, SULF1, VCAN, THBS2, COL1A1 
and COL12A1 out of MEyellow module from TCGA cohort and 
GLT8D2, SPARC, COL6A3, ANGPTL2, ACTA2, COL1A2, 
CTSK, MMP2, BGN, ISLR, CDH11, AEBP1, COL5A1, DCN, 
THBS2, COL5A2, TAGLN, INHBA, MXRA5 out of MEred 
module from GSE68465 cohort. Next, a prognostic model 
consisting of two genes, COL5A2 and COL5A1 was generated 
(Figure 3A-B)), and the risk score of each patient as the sum of 
each gene multiplied by the corresponding coefficient 0.128 for 
COL5A2 and 0.003 for COL5A1.

To avoid overfitting effects, we evaluated the the correlation 
of CAF and risk scores of samples from TCGA cohort by GGally 
algorithm using EPIC, MCPcounter, xCell and TIDE. All the 
results from different algorithms were positively correlated. 
Based on the classification, patients in the TCGA cohort were 
divided into high- and low-risk groups by the median risk score. 
According to the expression of COL5A2 and COL5A1, patients 
were classified in the high-risk group (n=235) and low-risk group 
(n=236) with mean risk score= 1.1, range 0.59-1.55) (Figure 3D). 
We found that with increased risk, COL5A2 and COL5A1 were 
up-regulated accordingly. Notably, the 2-gene panel integrated 
with all of the algorithms turned out to represent the CAF-related 
genes panel (Figure 3E). CAF is an important component in tumor 
and may influence therapeutic effects. Therefore, this signature 
was testified by tumor immune dysfunction and exclusion (TIDE) 
to predict tumor treatment effects based on tumor pre-treatment 
expression profiles, this TIDE module can estimate multiple 
published transcriptomic biomarkers to predict patients’ response 
(Figure 3F).  54% versus 18% of patients respond to anti-PD-1 
or anti-CTLA-4 in low-risk group compared to high-risk group 
(Fig. 3G-H, p <0.001). Noticeably, The accuracy of the signature 
was validated by the AUCs, which were 0.757 (95% CI 0.708-
0.801) (Figure 3I). These results indicated that this signature had 
a promising application in the prediction of clinical outcomes of 
immune therapy.

Figure 3: CAF-related genes were analysed with patients’ clinical traits and a model were explored to predict immunotherapeutic 
response of LAC patients. (A) Univariate Cox regression analysis identifying CAF-associated genes correlating with overall survival. 
(B) Partial likelihood deviance revealed by LASSO regression in the 10-fold cross-validation to establish a model to predict risk of 
CAF-associated genes. The optimal values were shown within the two dotted vertical lines. (C) Correlation of the expression of CAF-
associated genes, stromal score and risk score were analyzed by EPIC, MCPcounter, xCell and TIDE. (D) Heatmap for CAF-associated 
genes generated by comparison of the high score group vs. the low score group in risk. Row name of heatmap is the gene name, and 
column name is the ID of samples which not shown in plot. (E) Correlation of the genes in predicting model with the CAF-associated 
genes. (F) the upper figure showed the response of patients from TCGA cohort to immune checkpoint inhibitor. The lower figure 
showed the response of patients from GSE68465 cohort to immune checkpoint inhibitor. (G) Boxplot showed the responsive percentage 
of patients from high-risk and low-risk groups to anti-PD-1 therapy. (H) Violin plot showed the significant difference of response to 
immune checkpoint inhibitor between high-risk and low-risk groups. (I) ROC curve of the response to immune checkpoint inhibitor.
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Functional Analysis to CAF High- and Low-Risk Groups

The GSVA package was used for gene set variation analysis (GSVA). The GSVA results were compared between the high- and low-CAF 
infiltration groups and are displayed. Gene set enrichment analysis (GSEA) was used to explore the biological functions of COL5A2 
and COL5A1 using GSEA 4.3.2 Hallmark; and gene ontology gene sets were obtained from the MSigDB Collections (http://www.
gsea-msigdb.org/gsea). The GO analyses demonstrated the activation cytosolic ribosome, large ribosomal subunit, ribosomal subunit, 
ribosome and structure constituent of ribosome were present in low-risk group (Figure 4A). In contrast, nucleosome assembly, DNA 
packaging complex, nucleosome, extracellular matrix structural constituent and structural constituent of chromatin were activated in high-
risk group (Figure 4B). The KEGG analysis showed that glycine serine and threonine metabolism, linoleic acid metabolism, oxidative 
phosphorylation, parkinsons disease and ribosome pathways were involved in low-risk group (Figure 4C). However, cytokine-cytokine 
receptor interaction, ECM receptor interaction, focal adhesion, pathways in cancer and systemic lupus erythematousus pathways were 
upregulated in high-risk group (Figure 4D). These results suggested that extracellular matrix-associated pathways and function were 
active in COL5A2-upregualted LACs. Correlation analyses revealed that vatomical structure formation (R=0.65, p <0.001), fibroblast 
migration (R=0.66, p <0.001) and fibroblast proliferation (R=0.64, p <0.001) were the significant risk factors in LACs (Figure 4E-G).

Figure 4: GO and KEGG analyses on LACs from low- and high-risk groups. A-B, GO analyses of CAF-associated genes are shown 
in low-and high risk groups. C-D, KEGG signaling pathways based on CAF-associated genes are shown in low-and high- risk groups. 
E-G, Scatter plots showing the correlation of structure formation, fibroblast migration and proliferation with risk score. p and R values 
from Spearman correlation analyses.



Citation: Shi XQ, Wang XL, Chang XJ, Li KA, Cai Y (2023) COL5A2-Dependent Cancer-associated Fibroblasts (CAF) Reveals Regulation of the 
Tumor Microenvironment and Response to Immunotherapy in Lung Adenocarcinoma. J Oncol Res Ther 8: 10186. DOI: 10.29011/2574-710X.10186

9 Volume 8; Issue 03
J Oncol Res Ther, an open access journal
ISSN: 2574-710X

COL5A2 Expression Were Associated With the Clinicopathological Staging of LAC Patients

For determining the relationship between the proportion of immune and stromal components with the clinicopathological 
characteristics of LAC cases from TCGA database. We firstly analyzed the corresponding the expression of COL5A2 in normal and 
tumor tissues. Whether or not in paired normal and tumor tissue, the expression level was higher in tumor than in normal tissues (Figure 
5A-B). We also analyzed the expression level of COL5A2 to clinical information. COL5A2 expression was not correlated with patient’s 
age, gender (Fig. 5C-D). We noticed that COL5A2 expression was associated with T stage. Tumor in T1 had low level of COL5A2 
expression than T2 and T3 (Figure 5E). Similar tendency was found in stage I versus stage II (p <0.01, Figure 5H). However, with in 
advanced stage of LACs, the expression of COL5A2 was not positively increased with tumor progression (Figure 5F-G). This suggested 
that COL5A2 expression increased with tumor enlargement. Heatmap plot showed other clinical characteristics in the groups of high- 
and low-expresison of COL5A2 (Figure 5I). 

As shown in Figure 5J, A nomogram model was constructed that included T stages, tumor status, pathologic stages, and COL5A2 
expression levels as parameters. The nomogram showed a significantly high clinical value in predicting the 1 -, 3-, and 5-year survival 
probability of the LAC patients (Figure 5J). 

Univariate COX regression analysis on clin-pathological factors, and the results indicated that the expression of COL5A2 and 
clinical stage were the significant prognostic factors to patients with HR=1.174 (95% CI 1.05-1.313) and HR=1.626 (95% CI 1.413-
1.871), respectively (Figure 5K). Similar results were concluded by multivariate regression (Fig. 5L). 

Figure 5: COL5A2 expression in LACs and compared among the groups with different clinical traits. (A) TCGA database analysis 
shows the COL5A2 expression levels in LAC tissues and their corresponding adjacent normal tissues. *p < 0.05; ***, p < 0.001. (B) 
COL5A2 expression levels were significantly higher in the LACs tissues compared to the adjacent peritumoral tissues. (C-H) COL5A2 
expression levels were significantly lower in T1 LAC patients compared to T2 and T3 LACs (p < 0.05). Similar difference occurrence 
when compared in patients with different clinical stage (p <0.05). There were no significance in patients according to age, gender, N 
staging and M staging. (I) Heatmap showing the association of clinical characteristics in low- and high expression level groups. (J) 
Nomogram model analysis to evaluate the prediction efficacy the nomogram model that includes clinicopathological factors (T stages, 
tumor status, and pathologic stages) and COL5A2 expression levels to predict the 1-, 3-, and 5-year survival rates of LAC patients. 
(K-L) uniCox and multiCox variates analyses show that COL5A2 expression is the crucial factor associated with patients’ prognosis.
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COL5A2 Had Potential to Be an Indicator of tumor progression

Given the levels of COL5A2 were negatively correlated with the survival of LAC patients, to ascertain the exact alterations of 
gene profile with COL5A2 expression, the correlation analysis between COL5A2 and other genes were carried out in TCGA cohort. The 
total 8204 correlated genes were obtained and the top 5 upregulated and down-regulated genes by COL5A2 were plotted in Figure 6A. 
There were 890 DEGs based on the COL5A2 median expression level by fdr cutoff=0.05. 706 genes were upregulated and 184 genes 
were downregulated. The top 50 genes related to COL5A2 expression in low- and high-level were shown in the heatmap (Figure 6B). 

To perform a functional annotation of the COL5A2-associated DEGs in the LAC patients using the “clusterProfiler” R package. 
The GO enrichment analysis results consisting of the highly enriched biological processes, cellular components, and molecular 
functions (p <0.05) were shown in Figure 6C. KEGG analysis exhibited that DEGs were clustered in “PI3K-AKT”, “neuroactive ligand-
receptor interaction”, “protein digestion and absorption” pathways. GSEA was implemented to show the COL5A2-associated DEGs 
were significantly aggregated in clusters, which were dysfunctioned in “mitochondrial respiratory chain complex assembly”, “nuclear 
transcribed mRNA catabolic process”, and “cytosolic ribosome”; enriched in “arachidonic acid metabolism”, “glutathione metabolism” 
and “oxidative phosphorylation” pathways (Figure 6D). The top biological processes enriched by GO analysis included “extracellular 
matrix organization”, “extracellular structure organization”, and “external encapsulating structure organization”. The most enriched 
cellular components were “collagen-containing extracellular organization”, “endoplasmic reticulum lumen”, and “collagen trimer”. The 
most enriched molecular functions were “extracellular matrix structural constituents”, “receptor ligand activity”, and “glycosaminoglycan 
binding” (Figure 6E) 

We further verified our results using Broad Institute Cancer Cell Line Encyclopedia (CCLE) database to testify the expression 
level in lung cancer cells and CAFs for TCGA cohort. We found that COL5A2 expression are significantly increased in CAFs than in 
tumor cells (Figure 7 A-B). In addition, we also explored to CAF, tumor cells and tumor bulk of LAC at the protein level by Western 
blotting and observed a significantly higher level of pAKT1 protein in CAFs, lower level in tumor cells (Figure 7C), which is consistent 
with the result from public dataset. 

Figure 6: Different expression genes and pathways associated with COL5A2 expression. (A) Coexpression circling plot of 10 genes 
with COL5A2 showed the genes were upregulated and downregulated. (B) Heatmap showed the DEGs in the groups with COL5A2 low- 
and high-level expression. (C) Circling plot showed the results of GO enrichment clustered genes. (D) KEEG analysis on the associated 
pathways with COL5A2. (E) GO function enrichment clustering showed the pathways are activated with COL5A2.

Figure 7: COL5A2 and COL5A1 expression in lung cancer cells and fibroblasts. (A) Upregulation of COL5A2 and COL5A1 in 
fibroblasts compared to lung cancer cells (LUNG) from Broad Institute Cancer Cell Line Encyclopedia (CCLE) database. (B) Heatmap 
exhibited the upregulation of COL5A2 and COL5A1 in fibroblast and lung cancer cells (LUNG) from Broad Institute Cancer Cell Line 
Encyclopedia (CCLE) database. (C) LAC tumor tissue section was stained by hematoxylin-eosin staining. (D) LAC tumor tissues were 
micro dissected and classified into cancer cells and tumor stroma groups. (E) Western blot showed the expression of COL5A2 and 
pAKT1 proteins in fibroblasts isolated from normal and cancer tissues of LAC. 

Correlation of COL5A2 With the Proportion of TICs and drug sensitivity to different risk groups.

To further confirm the correlation of COL5A2 expression with the immune microenvironment, the proportion of tumor infiltrating 
immune subsets was analyzed using CIBERSORT algorithm, immune scores were significantly increased in the group with high-
level COL5A2 expression vs the group with low-level COL5A2 (Figure 8A). 22 kinds of immune cell profiles in LAC samples were 
constructed (Figure 8B). The results from the difference and correlation analyses showed that a total of 11 kinds of immune cells were 
correlated with the expression of COL5A2 (Figure 8B). Among them, five kinds of TICs were positively correlated with COL5A2 
expression, including macrophage M0, CD4+ memory activated T cells, NK resting cells, activated mast cells and neutrophil; Six kinds 
of immune cells were negatively correlated with COL5A2 expression, including T cells follicular helper, activated NK cells, resting 
mast cells, monocytes, CD8+ T cells and resting dendritic cells (Figure 8C). These results further supported that the levels of COL5A2 
affected the immune activity of TME. To predict immune therapy effect, we analyzed the correlations between COL5A2 and immune 
checkpoint inhibitor-associated genes listing in Figure 8D. These results indicated that COL5A2 expression were positively related to 
these genes except TNFSF15. 

CAFs are important components in tumor and may influence chemical therapy. We analyzed potential impacts on drugs through 
Bioconductor package: “TxDb.Hsapiens.UCSC.hg19.knownGene” and “oncoPredict” R package. Tumors with high risk were sensitive 
to alisertib (p <0.001), docetaxel (p <0.001), cisplatin (p <0.001), cytophosphamide (p <0.001) and AT13148 (p <0.001) (Figure 9 A-E). 

 In this study, we observed CD4+, CD8+ T cells and COL5A2 expression in CAFs in twenty LACs with neoadjuvant immunotherapy. 
We found that CD4+ T cells infiltrating both in tumor parenchyma and in stroma (Figure 9?). However, CD8+ T cells infiltrated in stroma 
and at the edge of tumor parenchyma. This distribution resulted in different TIME. In addition, we also evaluated the expression of 
COL5A2 in Table 4. 9 out of 20 (45%) LACs treated by ICI had high level of COL5A2 expression, whereas 11 LACs (55%) had low 
levels of COL5A2 expression.
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Figure 8: TME scores and immune cells infiltrating in different groups with COL5A2. (A) Violin plot showed TME scores for 
LAC patients in different subgroups. (B) Boxplot showed the expression profiles of 22 immune cells in different subgroups. (C) Lillipop 
plot exhibited the immune cells are positively and negatively associated with COL5A2 expression. (D) Heatmap showed relationship 
between the immune checkpoint inhibitor-associated genes with COL5A2 expression. (E-I) Immunohistochemistry was used to stain 
specific biomarkers. (E) CD4+ T cells were stained by immunohistochemistry. These cells infiltrated in both tumor parenchyma and 
stroma. (F) CD8+ T cells were showed infiltrating in stroma only. (G) COL5A2 protein was expressed in low level. (H) COL5A2 protein 
expressed in high level in stroma. (I) COL5A2 protein was overexpressed by CAFs in LAC after ICIT.
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Figure 9: Drug sensitivity of IC50 with COL5A2 expression. (A-E) alisertib, docetaxel, cisplatin, cytophosphamide and AT13148 had 
better effects in the subgroup of high-level COL5A2 expresssion (p < 0.001).

Pathological response to immune checkpoint inhibitor therapy 
(ICIT)

In this study, twenty LAC patients were examined before 
and after ICIT by computerized tomography (Figure 10A-
B). Pathological responses were summarized in Table 3. The 
histological types present in these LACs were acinar, papillary and 
solid patterns. A total of 4 LACs obtained complete pathological 
response (CPR) and all these LACs had uniform histological 
components. Two of the 4 LACs with CPR were found at IB and 
two at IIA with acinar and solid patterns, respectively. Among the 4 
LACs with major pathological response (MPR), three LACs (75%) 
contained uniform solid or acinar pattern. Additionally, these four 
LACs with MPR were found at stage IIA. As far as the 12 LACs 
with less pathological response (LPR) were concerned, 10 LACs 
(83.3%) had heterogeneous histological constituents and were 
diagnosed at IIB and IIIA. Pathological responses of LACs were 
correlated with their clinical stages and histological constituents 
(P <0.05). Among the 9 LACs with COL5A2 overexpression, 3 
LACs (75%) had CPR, 3 LACs (75%) had MPR, and 3 LACs 

(25%) had LPR (p =0.098). We also noticed that more than 90% 
tumor retraction occurred in LACs with COL5A2 overexpression 
(p= 0.025). It suggested that LACs with uniform pattern and at 
early clinical stage had better pathological response. Tumors with 
CPR were found with more necrosis compared to those with MPR 
and LPR. Fibrosis and inflammation were not associated with 
different pathological responses. 

Pathological responses included fibrosis, inflammation and 
necrosis occurring differently in LACs. (Fig. 10 C-H, Table 4). The 
mean proportions of necrosis were 11%, 18% and 30% in LPR, 
MPR and CPR, respectively. Necrosis was the obvious change 
within different pathological responses (p =0.024), compared to 
fibrosis and inflammation. Inflammation and fibrosis were common 
in tumor bed and the proportions were not significantly associated 
with effectiveness of ICIT (Fig. 10H). Further observation on 
LACs with MPR and LPR indicated that survived tumor cells were 
entrapped in fibrotic stroma and were isolated from immune cells 
by proliferated collagens and the immune cells aggregated at the 
rim of tumor nests (Fig. 10E). In addition, immune cells infiltrated 
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tumor bed less in those tumors with LPR compared to those with MPR and CPR (Table 4).

Figure 10: A representative patient was used as an example of LAC to show the clinicopathological features. (A) A tumour mass 
was present in the inferior lobe of the left lung, which was determined using computed tomography (CT) before immune checkpoint 
inhibitor therapy (ICIT). (B) The tumor mass was scanned by CT after three-week ICIT before surgical operation. (C) Acinar component 
was obtained by fine needle aspiration. (D), The pathological response with major pathological remission was evaluated on resected 
tumor. Residule tumors (black arrow) are entrapped in inflammatory stroma. (E) A single tumor cell (black arrow) was entrapped alive 
in fibrosed tumor bed and scattered tumor cells (red arrow) were surrounded by lymphocytes (green arrow) (magnification ×200).  (F) 
Tumor bed (black arrow) was fibrosed. Lymphocytes (green arrow) were aggregated in stroma to form an immature germinal center 
(magnification ×200). (G) Residual tumor cells (red arrow) were surrounded by lymphocytes (green arrow), which aggregated in stroma 
to form a mature germinal center (magnification ×200). (H) Obvious necrosis in tumor bed and surrounded by diffuse infiltrating 
lymphocytes (magnification ×200). (I) survived tumor cells were entrapped in fibrotic stroma and were isolated to immune cells by 
proliferated collagen. The immune cells aggregated at the rim of tumors (black arrow). (magnification ×400). (J) Pathological responses 
were compared within different subgroups. Necrosis occurred more frequently in the LACs with CPR than those with MPR and LPR 
after ICIT (p=0.024). Fibrosis and inflammation were not significantly different in subgroups.

Discussion
Recent studies have indicated the crucial roles of cancer-

associated fibroblasts. Many of them focus on the heterogeneity 
and corresponding biological features of different CAF clusters in 
cancer [22, 23]. However, the detailed mechanism underlying how 
CAFs influence the TME has been a prominent theme in recent 
years.

Tumor stroma is made up of diverse populations of cells of 
mesenchymal origin included in the extracellular matrix. These 
cells are fibroblasts, endothelial, inflammatory, and mesenchymal 
stem cells. The tumor microenvironment is qualitatively and 
quantitatively variable depending on the organ in which the 
tumor develops and depending on the type of tumor. This tumor 
stroma will change over time and during the process of tumor 
development, according to the interactions that can occur between 
tumor cells and stromal cells. Treatments can also modify the 
tumor’s stroma. Among the stromal cells appearing during these 

mechanisms, CAFs are of particular importance. CAFs produce 
numerous pro-tumoral cytokines (including IL6, IL8, IL10, TNFα, 
TGF-β) and generate a collagen matrix which hinders the action of 
T lymphocytes within the tumor. 

Hence, it is more important to explore the expression profile 
of CAFs. As CAF-derived proteins represent the most common 
way for intercellular crosstalk and might serve as biomarkers for 
cancer and identified representative coding gene. Here, we have 
explored the expression profile of the tumor bulk to analyze the 
characteristics of fibroblasts in LACs. We evaluated the impact 
of fibroblasts on patients’ prognoses and further identified an 
extracellular secreted protein, COL5A2, as a biomarker for CAFs 
and a predictor for poor prognosis in LAC and a potential predictor 
for chemical therapy. 

Clinically, activated CAFs have been associated with 
worse prognosis, resistance to therapies, and disease recurrence 
in multiple cancers [24,25]. It is significant to investigate the 
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CAF-associated genes and sieve representative biomarkers to 
predict the potential application in clinical evaluation. Therefore, 
in this study, we explored CAF-associated genes in two cohorts 
from TCGA dataset and GSE68465 and found that poorer clinical 
outcomes emerged in patients with more CAF-associated stromal 
scores. We also noticed that there were paradoxical results from 
different algorithms (Fig.1A-C, E-F). The cause may result from 
the constituents of these two cohorts because the patients had 
different clinical traits. However, higher stromal scores of LACs 
from both TCGA and GEO datasets all correlated to poorer 
patients’ prognoses. This result suggests that tumor stroma is 
crucial to worse clinical outcomes. 

To further analyze the inconsistent clinical outcomes from 
TCGA and GSE68465, we determined to extract their common 
genes and pathways to find the crucial CAF-related genes. 
Consequently, 12 genes were obtained and the result of GO and 
KEGG analyses showed that “protein digestion and absorption”, 
“ECM-receptor interaction” pathways and extracellular matrix 
remodeling-related activities were upregulated in LACs. These 
outcomes were consistent with previous studies, which showed 
that fibroblasts exerted their function by producing excreted 
factors, remodeling the extracellular matrix, influencing cancer 
cell metabolism and direct cell-cell interactions. Furthermore, 
CAFs serve as leading cells for cancer cells during cell migration 
[26]. Fibroblasts pave the way for subsequent malignant cells and 
lead to tumor invasion by direct cell-to-cell contact. 

CAFs are one of the components in tumor stroma and 
especially prominent due to abundance of CAFs and a complex 
TME, which is of significant impact on T cells recruitment, 
infiltration, and cytotoxic function within the tumor27. More 
attention should be focused on the specific activation of CAFs, 
therefore, we need to sieve and find the most representative genes 
that could accurately predict the response to clinical treatment. To 
degenerate and concentrate the representative genes, WGCNA and 
LASSO regression were used and a model consisting of two genes, 
COL5A2 and COL5A1, were constituted to predict the complex 
LAC stroma. Consequently, we testified the integrity of this model 
to CAF-related genes. The results demonstrated that COL5A2 and 
COL5A1 were all positively correlated to other CAF-related genes 
(Fig.3E). This result indicated that COL5A2 and COL5A1 were 
worthwhile to represent CAFs’ traits. 

Patients have different clinical outcomes when using a same 
treatment regimen. It is crucial to find characteristic markers to 
predict the possible outcomes, especially in immunotherapies. 
Cancer immunotherapies have rapidly changed the therapeutic 
landscape for cancer. Although impressive efficacy demonstrated 
in subsets of patients, most of the patients show innate or acquired 
resistance to these therapies [28-30]. A better understanding of the 
mechanisms that impede immune activation may thus enhance the 

potential of cancer immunotherapy. An emerging role of CAFs have 
been highlighted in shaping the tumor immune microenvironment 
(TIME) and influencing response to cancer immunotherapies [31]. 
Extensive crosstalk between CAFs and cellular components of the 
immune system has been shown to contribute to immune escape 
and an immunosuppressive milieu of tumors via both biochemical 
and biomechanical mechanisms [31,32]. Hence, we subgrouped 
the patients from TCGA cohort in low-risk and high-risk groups 
based on COL5A2 and COL5A1expression. We then observed 
the anti-PD-1 response and found that more patients in high-risk 
group were beneficial from anti-PD-1 immunotherapy than those 
in low-risk group (54% vs 18%). This result prompt that our model 
is worthwhile to improve clinical prediction to immunotherapy. 
ROC curve showed the promising sensitivity and specificity. 
Future CAF-targeting therapeutic strategies particularly may be 
used in the context of optimizing the success of immunotherapies.

According to low- and high-risk groups, we further explored 
the related molecular pathways and function by GSEA analysis. 
ECM receptor interaction, focal adhesion pathways were involved 
in ECM remodeling. ECM remodeling is associated with fibroblast 
migration and proliferation. The promising yet limited success of 
cancer immunotherapy prompt intensified efforts in developing 
novel combination therapies to overcome resistance by targeting 
additional mechanisms that impede immune activation in TME. 
However, such efforts require a better explanation to the complex 
composition and diverse biology of TME from different tumor 
types, different histology of the tumors, different metastatic sites, 
or even within the same tumor [33,34]. We observed in this study 
that COL5A2 was the biomarker which is more concordant to 
the increase of risk score than COL5A1 (Fig. 3D). Therefore, we 
further evaluate it to identify its role in TME regulation. Firstly, we 
compared the expression of COL5A2 in tumor and normal lung 
tissues. And find that its expression is significantly upregulated 
in LACs. When compared in clinical characteristics, we noticed 
that COL5A2 expression increased with tumor size and closely 
associated with T stage. During the progression of tumor, COL5A2 
keep higher level of expression except T4. These results indicate 
that COL5A2 participates in the construction of tumor at earlier 
stage. Overexpression of COL5A2 was also demonstrated as a 
hazardous factor for patients’ prognoses whether in univariate and 
multivariate analysis. COL5A2 is a promising biomarker to predict 
clinical outcomes. COL5A2 can upregulate MXRA5, THBS2, 
COL5A1, ADAMTS12, COL1A2 and COL3A1. The activated 
molecular pathways were “PI3K-AKT”, “neuroactive ligand-
receptor interaction”, “protein digestion and absorption” pathways. 
All these pathways influence extracellular matrix and structure 
organization of TME, which further impact on extracellular matrix 
structural constituents. Furthermore, we revealed that COL5A2 
were mainly produced from fibroblasts whereas from LAC cells.
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As known that TME consists of tumor parenchyma and 
stroma. The latter component comprises of CAF, immune cells, 
and extracellular matrix. To define the immune presence in TME, 
the concept of hot and cold tumors has initially emerged based 
on the presence or absence of T cells in the tumor, respectively 
[35]. Additional categories have been integrated to take into 
consideration the localization of the T cells within the tumor and 
stroma [36,37]. It is important to note that these classifications 
are an important framework to better understand the different 
tumor immune microenvironment (TIME) but also to help to 
tailor effective immunotherapies. Herein, we investigated the 
stromal score, immune score and the whole score of tumor bulk, 
respectively. The immune-associated scores were increased in 
LACs with high level of COL5A2 expression. Meanwhile, immune 
cells varied in TME with more infiltrating macrophages M0, CD4+ 
memory activated T cells, resting NK cells than follicular helper 
T cells, activated NK cells, resting mast cells, and CD8+ T cells. 
All these immune cells construct a useful framework not only 
by the quantity and spatial distribution of T cells, in particular, 
CD8+ T cells in the TIME [28,38]. Historically, this classification 
of tumor-immune phenotypes is derived from CD3 or CD8 
immunohistochemistry (IHC) analysis in solid tumors. However, 
such classification presents great challenges to the pathologists 
due to the continuous nature of T cell infiltration and high tumor 
heterogeneity. To address these challenges, the with low or absence 
of T cells both in the tumor epithelium and stroma [38,39]. With 
the increased understanding of CAFs and their multifaceted role in 
mediating immune suppression and shaping the tumor immunity 
continuum. The CAF-derived ECM is composed of a complex 
mixture of macromolecules, including collagen fibers, ECM-
degrading proteases, glycosaminoglycans, and glycoproteins [40]. 
ECM proteins provide structural signals and support for tumor 
cells to grow and migrate. More importantly, over-production of 
ECM increases tissue stiffness and matrix rigidity and serves as a 
physical barrier that inhibits the access of antitumor immune cells 
and impedes the delivery of therapeutic drugs [41-43]. These may 
account for the lower level expression of COL5A2 in T4-staged 
tumor. New approaches targeting ECM components emerged to 
reduce the physical barrier of ECM in order to increase intratumoral 
permeability of antitumor immune cells and therapeutic agents. We 
predicted drug efficacy and find that alisertib, docetaxel, cisplatin, 
cytophosphamide and AT13148 had substantially therapeutic effect 
in LACs with high-level expression of COL5A2. These results 
suggest that cytotoxic drug could kill both tumor cells and CAFs to 
destroy extracellular matrix and increase its permeability. Alisertib 
is reported exhibiting various regulatory effects on the PI3K/Akt 
and mitogen-activated protein kinase (MAPK) pathways [44]. In 
addition, AT13148 is a first-in-class multi-AGC kinase inhibitor. 
AT13148 treatment in gastric cancer cells dramatically suppressed 
activation of multiple AGC kinases, including Akt (at p-Thr-308), 

p70S6 kinase (p70S6K), glycogen synthase kinase 3beta (GSK-
3beta) and p90 ribosomal S6 kinase (RSK) [45]. All these results 
prompt that LAC with COL5A2 overexpression will be beneficial 
from chemotherapy combined with conventional and targeting 
drugs. 

In this study, owing to COL5A2 and COL5A1 high-risk group 
having better response to immunotherapy of anti-PD-1. Twenty 
LACs were then involved to evaluate the response to immune 
checkpoint inhibitor therapy (ICIT). We found that more than 90% 
tumor retraction occurred in LACs with COL5A2 overexpression. 
Further observation on the LACs with MPR and LPR revealed that 
survived tumor cells were encompassed in fibrotic stroma and were 
isolated from immune cells by proliferated collagens. In addition, 
the immune cells aggregated at the rim of remnant tumor nests. All 
these suggest that ICIT could have an effective tumor suppression, 
however, the tumor cell may potentially escape from immune 
surveillance by the isolation owing to reactive proliferative 
fibrous stroma after ICIT. It should pay more attention to tumor-
specific increase in macromolecular permeability and enhanced 
the intratumoral delivery of the chemotherapeutic agents to inhibit 
tumor growth and prolong survival during ICIT.

We also realize the limitations of our study. First, the relative 
abundance of fibroblasts was evaluated by a clustering method 
using classic CAF markers with higher specificity instead of all 
well-known fibroblast markers. Besides, the results are generally 
comparable in LACs without considering specific gene status, 
such as EGFR, ALK or KRAS. Second, sampling bias might occur 
because the fraction of the stromal part varies in different samples 
due to the internal heterogeneity of the tumor bulk. Limited 
cases of LAC administrated with ICI and further stratification 
could not be achieved. Finally, the mechanism underlying how 
COL5A2 affects the TME, especially after ICIT was not explored 
in this study. Further investigations about how COL5A2 affects 
tumor cells and immune components, such as CD8 + T cells and 
macrophages after ICIT, will advance our understanding of the 
roles of CAFs in LACs.
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Table 1: Genes from MCPcounter algorithm clustering analysis.

HUGO symbols Cell population ENTREZID ENSEMBL ID
CD28 T cells 940 ENSG00000178562
CD3D T cells 915 ENSG00000167286
CD3G T cells 917 ENSG00000160654
CD5 T cells 921 ENSG00000110448
CD6 T cells 923 ENSG00000013725
CHRM3-AS2 T cells 100506915 ENSG00000233355
CTLA4 T cells 1493 ENSG00000163599
FLT3LG T cells 2323 ENSG00000090554
ICOS T cells 29851 ENSG00000163600
MAL T cells 4118 ENSG00000172005
MGC40069 T cells 348035 NA
PBX4 T cells 80714 ENSG00000105717
SIRPG T cells 55423 ENSG00000089012
THEMIS T cells 387357 ENSG00000172673
TNFRSF25 T cells 8718 ENSG00000215788
TRAT1 T cells 50852 ENSG00000163519
CD8B CD8 T cells 926 ENSG00000172116
CD8A Cytotoxic lymphocytes 925 ENSG00000153563
EOMES Cytotoxic lymphocytes 8320 ENSG00000163508
FGFBP2 Cytotoxic lymphocytes 83888 ENSG00000137441
GNLY Cytotoxic lymphocytes 10578 ENSG00000115523
KLRC3 Cytotoxic lymphocytes 3823 ENSG00000205810
KLRC4 Cytotoxic lymphocytes 8302 ENSG00000183542
KLRD1 Cytotoxic lymphocytes 3824 ENSG00000134539
BANK1 B lineage 55024 ENSG00000153064
CD19 B lineage 930 ENSG00000177455
CD22 B lineage 933 ENSG00000012124
CD79A B lineage 973 ENSG00000105369
CR2 B lineage 1380 ENSG00000117322
FCRL2 B lineage 79368 ENSG00000132704
IGKC B lineage 3514 ENSG00000211592
MS4A1 B lineage 931 ENSG00000156738
PAX5 B lineage 5079 ENSG00000196092
CD160 NK cells 11126 ENSG00000117281
KIR2DL1 NK cells 3802 ENSG00000125498
KIR2DL3 NK cells 3804 ENSG00000243772
KIR2DL4 NK cells 3805 ENSG00000189013
KIR3DL1 NK cells 3811 ENSG00000167633
KIR3DS1 NK cells 3813 ENSG00000275037
NCR1 NK cells 9437 ENSG00000189430
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PTGDR NK cells 5729 ENSG00000168229
SH2D1B NK cells 117157 ENSG00000198574
ADAP2 Monocytic lineage 55803 ENSG00000184060
CSF1R Monocytic lineage 1436 ENSG00000182578
FPR3 Monocytic lineage 2359 ENSG00000187474
KYNU Monocytic lineage 8942 ENSG00000115919
PLA2G7 Monocytic lineage 7941 ENSG00000146070
RASSF4 Monocytic lineage 83937 ENSG00000107551
TFEC Monocytic lineage 22797 ENSG00000105967
CD1A Myeloid dendritic cells 909 ENSG00000158477
CD1B Myeloid dendritic cells 910 ENSG00000158485
CD1E Myeloid dendritic cells 913 ENSG00000158488
CLEC10A Myeloid dendritic cells 10462 ENSG00000132514
CLIC2 Myeloid dendritic cells 1193 ENSG00000155962
WFDC21P Myeloid dendritic cells 645638 ENSG00000261040
CA4 Neutrophils 762 ENSG00000167434
CEACAM3 Neutrophils 1084 ENSG00000170956
CXCR1 Neutrophils 3577 ENSG00000163464
CXCR2 Neutrophils 3579 ENSG00000180871
CYP4F3 Neutrophils 4051 ENSG00000186529
FCGR3B Neutrophils 2215 ENSG00000162747
HAL Neutrophils 3034 ENSG00000084110
KCNJ15 Neutrophils 3772 ENSG00000157551
MEGF9 Neutrophils 1955 ENSG00000106780
SLC25A37 Neutrophils 51312 ENSG00000147454
STEAP4 Neutrophils 79689 ENSG00000127954
TECPR2 Neutrophils 9895 ENSG00000196663
TLE3 Neutrophils 7090 ENSG00000140332
TNFRSF10C Neutrophils 8794 ENSG00000173535
VNN3 Neutrophils 55350 ENSG00000093134
ACVRL1 Endothelial cells 94 ENSG00000139567
APLN Endothelial cells 8862 ENSG00000171388
BCL6B Endothelial cells 255877 ENSG00000161940
BMP6 Endothelial cells 654 ENSG00000153162
BMX Endothelial cells 660 ENSG00000102010
CDH5 Endothelial cells 1003 ENSG00000179776
CLEC14A Endothelial cells 161198 ENSG00000176435
DIPK2B Endothelial cells 79742 ENSG00000147113
EDN1 Endothelial cells 1906 ENSG00000078401
ADGRL4 Endothelial cells 64123 ENSG00000162618
EMCN Endothelial cells 51705 ENSG00000164035
ESAM Endothelial cells 90952 ENSG00000149564
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ESM1 Endothelial cells 11082 ENSG00000164283
FAM124B Endothelial cells 79843 ENSG00000124019
HECW2 Endothelial cells 57520 ENSG00000138411
HHIP Endothelial cells 64399 ENSG00000164161
KDR Endothelial cells 3791 ENSG00000128052
MMRN1 Endothelial cells 22915 ENSG00000138722
MMRN2 Endothelial cells 79812 ENSG00000173269
MYCT1 Endothelial cells 80177 ENSG00000120279
PALMD Endothelial cells 54873 ENSG00000099260
PEAR1 Endothelial cells 375033 ENSG00000187800
PGF Endothelial cells 5228 ENSG00000119630
PLXNA2 Endothelial cells 5362 ENSG00000076356
PTPRB Endothelial cells 5787 ENSG00000127329
ROBO4 Endothelial cells 54538 ENSG00000154133
C Endothelial cells 8436 ENSG00000168497
SHANK3 Endothelial cells 85358 ENSG00000251322
SHE Endothelial cells 126669 ENSG00000169291
TEK Endothelial cells 7010 ENSG00000120156
TIE1 Endothelial cells 7075 ENSG00000066056
VEPH1 Endothelial cells 79674 ENSG00000197415
VWF Endothelial cells 7450 ENSG00000110799
COL1A1 Fibroblasts 1277 ENSG00000108821
COL3A1 Fibroblasts 1281 ENSG00000168542
COL6A1 Fibroblasts 1291 ENSG00000142156
COL6A2 Fibroblasts 1292 ENSG00000142173
DCN Fibroblasts 1634 ENSG00000011465
GREM1 Fibroblasts 26585 ENSG00000166923
PAMR1 Fibroblasts 25891 ENSG00000149090
TAGLN Fibroblasts 6876 ENSG00000149591

Table 2: GO function enrichment analysis and  related genes

ONTOLOGY ID Description geneID

BP GO:0030198 extracellular matrix organization MMP2/AEBP1/COL5A2/COL5A1/COL1A2

BP GO:0043062 extracellular structure organization MMP2/AEBP1/COL5A2/COL5A1/COL1A2

BP GO:0045229 external encapsulating structure organization MMP2/AEBP1/COL5A2/COL5A1/COL1A2

BP GO:0035987 endodermal cell differentiation MMP2/INHBA/COL5A2/COL5A1

BP GO:0001706 endoderm formation MMP2/INHBA/COL5A2/COL5A1

BP GO:0030199 collagen fibril organization AEBP1/COL5A2/COL5A1/COL1A2

BP GO:0007492 endoderm development MMP2/INHBA/COL5A2/COL5A1
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BP GO:0032963 collagen metabolic process MMP2/INHBA/COL5A1/COL1A2

BP GO:0001704 formation of primary germ layer MMP2/INHBA/COL5A2/COL5A1

BP GO:0007369 gastrulation MMP2/INHBA/COL5A2/COL5A1

CC GO:0062023 collagen-containing extracellular matrix SPARC/ANGPTL2/MMP2/COL6A3/AEBP1/
COL5A2/COL5A1/COL1A2/MXRA5/THBS2

CC GO:0005581 collagen trimer COL6A3/COL5A2/COL5A1/COL1A2

CC GO:0005788 endoplasmic reticulum lumen COL6A3/COL5A2/COL5A1/COL1A2

CC GO:0005583 fibrillar collagen trimer COL5A2/COL5A1/COL1A2

CC GO:0098643 banded collagen fibril COL5A2/COL5A1/COL1A2

CC GO:0098644 complex of collagen trimers COL5A2/COL5A1/COL1A2

CC GO:0005604 basement membrane SPARC/COL5A1/THBS2

CC GO:0031091 platelet alpha granule SPARC/THBS2

CC GO:0031092 platelet alpha granule membrane SPARC

CC GO:0071682 endocytic vesicle lumen SPARC

MF GO:0005201 extracellular matrix structural constituent SPARC/COL6A3/AEBP1/COL5A2/COL5A1/
COL1A2/MXRA5/THBS2

MF GO:0030020 extracellular matrix structural constituent 
conferring tensile strength COL6A3/COL5A2/COL5A1/COL1A2

MF GO:0048407 platelet-derived growth factor binding COL5A1/COL1A2

MF GO:0005518 collagen binding SPARC/AEBP1

MF GO:0046332 SMAD binding COL5A2/COL1A2

MF GO:0019838 growth factor binding COL5A1/COL1A2

MF GO:0008201 heparin binding COL5A1/THBS2

MF GO:0008237 metallopeptidase activity MMP2/AEBP1

MF GO:0005539 glycosaminoglycan binding COL5A1/THBS2

MF GO:1901681 sulfur compound binding COL5A1/THBS2

MF GO:0070696 transmembrane receptor protein serine/
threonine kinase binding INHBA
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Table 3: KEGG pathway enrichment and the related genes

ID Description geneID

hsa04974 Protein digestion and absorption COL6A3/COL5A2/COL5A1/COL1A2

hsa04512 ECM-receptor interaction COL6A3/COL1A2/THBS2
hsa04510 Focal adhesion COL6A3/COL1A2/THBS2
hsa05165 Human papillomavirus infection COL6A3/COL1A2/THBS2
hsa04151 PI3K-Akt signaling pathway COL6A3/COL1A2/THBS2

hsa04933 AGE-RAGE signaling pathway in diabetic 
complications MMP2/COL1A2

hsa04926 Relaxin signaling pathway MMP2/COL1A2
hsa05415 Diabetic cardiomyopathy MMP2/COL1A2
hsa05205 Proteoglycans in cancer MMP2/COL1A2
hsa05219 Bladder cancer MMP2
hsa05144 Malaria THBS2

Table 4. Association of pathological response to clinical stage and histological features

Clinical stage

P value

Uniform 
histological 
components P value

COL5A2 expression

(%)

Proportion of 
Necrosis

, 

(95% CI)

Proportion of 
Inflammation

, 

(95% CI) 

Proportion of 
Fibrosis

, 

(95% CI)

Proportion of 
residual viable 

tumor cells  

（95% CI)

IB (%) IIA (%) IIB (%) IIIA (%)

Yes No low high P value

Pathological 
response

LPR 0 0 4 (33.3) 8 (66.7) <0.001 2 (16.7) 10 (83.3) 0.005 9 (75) 3 (25) 0.098
0.11±0.07,

(0.07-0.15)

0.24±0.05,

(0.21-0.27)

0.34±0.05,

(0.31-0.37)

0.31±0.07

(0.27-0.35)

MPR 0 4 (100) 0 0 3 (75) 1 (25) 1 (25) 3 (75)
0.18±0.05,

(0.1-0.25)

0.28±0.17,

(0.003-0.55)

0.43±0.19,

(0.12-0.73)

0.075±0.07

(0.03-0.12)

CPR 2 (50) 2 (50) 0 0 4 (100) 0 1(25) 3 (75)
0.3±0.22,

(0.044-0.64)

0.28±0.13,

(0.08-0.48)

0.43±0.13,

(0.23-0.63)
0

  LPR, less pathological response; MPR, major pathological response; CPR, complete pathological response.
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