
1 Volume 6; Issue 01

Research Article

Differential Expression of Necroptosis-Related 
Genes with regulating lncRNA in Triple 

Negative Breast Cancer to Predict Prognosis and 
Immunotherapy Response

Zijun Zhao1#, Xiayao Diao1#, Qing Cao1, Xin Lu1*	
1Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical 
College, Beijing, China.

*Corresponding author: Xin Lu, Professor, Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of 
Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing 100730, China.
# ZJZ and XYD contributed equally to this work

Citation: Zhao Z, Diao X, Cao Q, Lu X (2023) Differential Expression of Necroptosis-Related Genes with regulating lncRNA in 
Triple Negative Breast Cancer to Predict Prognosis and Immunotherapy Response. Ann med clin Oncol 5: 144. DOI: https://doi.
org/10.29011/2833-3497.000144

Received Date: 02 February, 2023; Accepted Date: 08 February, 2023; Published Date: 10 February, 2023

Annals of Medical and Clinical Oncology
Zhao Z, et al. Ann med clin Oncol 6: 144.
www.doi.org/10.29011/2833-3497.000144
www.gavinpublishers.com

Abstract
Purpose: Necroptosis is essential in tumor biology in which lncRNAs play an important role but related studies in triple negative 
breast cancer (TNBC) were insufficient. We aim to screen remarkable necroptosis-related lncRNA and construct a lncNRA-related 
risk model for precision of immunotherapy. Methods: Transcriptional data were acquired from TCGA database. Differentially 
expressed genes (DEGs) related to necroptosis were obtained in TNBC samples. LncRNAs related to DEGs were analyzed by 
following Cox and least absolute shrinkage and selection operator regression analysis. Prognosis-associated lncRNAs were 
brought into a model which divided training and testing samples into high-/low-risk subgroups. Survival analysis between 
these subgroups were conducted and independent variables of prognosis were selected. Nomogram was then created to predict 
prognosis of selected patients. Comparisons of immune landscape, tumor microenvironment, and immunotherapy response were 
performed between the two subgroups. Results: Seven necroptosis-related DEGs (NRGs) were found in TNBC. Six of 153 
NRG-related lncRNAs were brought into model. Forecast performance was validated in testing datasets. Immune cell infiltration 
and T-cell activity was weaker in high-risk group compared with that in low-risk counterparts. Innate and adaptive immune 
cell abundance was inversely proportional to risk score. Compared with low-risk group, patients in high-risk group had lower 
immune/stromal/ESTIMATE score, lower expression of immune checkpoint molecules, and worse immunotherapy response. 
Conclusion: Six NRG-related lncRNAs were potential targets for future precision therapy of TNBC. Our model was effective in 
predicting the prognosis of TNBC patients and beneficial for decision-making of immunotherapy. 
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Abbreviations
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CTLA-4: Cytotoxic T Lymphocyte-Associated Antigen-4

DC: Dendritic Cell

DEG: Differentially Expressed Genes

ER: Estrogen Receptor

FC: Fold Change

FDR: False Discovery Rate

FPKM: Fragments Per Kilobase of Exon model per Million 
mapped fragments

GSEA: Gene Set Enrichment Analysis

HCC: Hepatocellular Carcinoma

HDAC: Histone Deacetylase 9

HER-2: Human Epidermal Growth Factor Receptor 2

HR: Hazard Ratio

ICI: Immune Checkpoint Inhibitor

IPS: ImmunoPhenoScore

KEGG: Kyoto Encyclopedia of Genes and Genomes

LASSO: Least Absolute Shrinkage and Selection Operator

lncRNA: Long Non-coding RNA

MLKL: Mixed Lineage Kinase domain-like proteins

NK: Natural Killer

NRG: Necroptosis-Related Gene

NTNBC: Non-Triple-Negative Breast Cancer

PD-1: Programmed Death-1

PLA2G4E: Phospholipase A2 group IVE

PR: Progesterone Receptor

RIPK1/3: Receptor-Interacting serine/Threonine-Protein Kinase 
1/3

ROC: Receiver Operating Characteristic

ROS: Reactive Oxygen Species

ssGSEA: Single Sample Gene Set Enrichment Analysis

TCGA: The Cancer Genome Atlas

TCIA: The Cancer Immunome Atlas

TME: Tumor microenvironment

TNBC: Triple-Negative Breast Cancer

Introduction
According to the global cancer statistic GLOBOCAN 

published in 2020, female breast cancer (BC) was the most 
common malignancy, with approximately 2.3 million newly 
diagnosed cases (11.7%). It took the fourth place (6.9%) regarding 
cause of cancer-specific death of female patients globally [1]. 
Triple-negative BC (TNBC) is one of four main subtypes of BC. 
Different from the other three types, TNBC lacks of expression 
of estrogen and progesterone receptors (ER, PR) as well as the 
expression of human epidermal growth factor receptor 2 (HER-2). 
This characteristic makes it the most aggressive and refractory BC 
subtype, especially in younger patients [2,3]. Traditional endocrine 
treatment (tamoxifen and aromatase inhibitors) and targeting anti-
HER-2 therapy trastuzumab are ineffective in patients with TNBC 
[4]. Although neoadjuvant systemic therapy was used in early-
stage TNBC to improve survival, a series of age-related adverse 
events occurred, including cognitive damage and premature 
ovarian failure, severely affecting life quality [5-7]. What’s 
worse, heterogeneity of TNBC with unknown mechanism of 
carcinogenesis prompts more individualized anticancer treatments 
[4]. 

Necroptosis is termed as a kind of caspase-independent, 
regulated, and programmed cell death [8]. Different from 
apoptosis, necroptosis is featured as plasma membrane rupture, 
followed by releasing intracellular components which stimulating 
the immune system [9]. Necroptosis is associated with pathology 
of various types of diseases, including non-tumor and tumor 
diseases. The former part includes cardiovascular, cerebrovascular, 
neurodegenerative diseases, a series of infectious diseases, 
and some special types of ischemic morbidities [8, 10-12]. The 
latter part consists of hematological and solid malignancies [13-
17]. Receptor-interacting serine/threonine-protein kinase 1/3 
(RIPK1/3) and mixed lineage kinase domain-like proteins (MLKL) 
are pivotal molecules in the mechanism of necroptosis in cancers 
[18-19]. Via a cascade of signaling pathways involving interferon 
receptors (IFNR), T cell receptor (TCR), tumor necrosis factor 
superfamily (TNFSF), Toll-like receptors (TLR), and various 
types of physicochemical agents, RIPK1 was activated, which is 
the process of necroptosis induction [18, 20-22]. In tumor biology, 
necroptosis serves as a double-edged sword. On one hand, it is 
capable of inhibiting proliferation, aggression, and metastasis of 
malignancy; on the other hand, it stimulates production of reactive 
oxygen species (ROS) and maintains tumor microenvironment 
(TME)[23-25]. Bench studies have found that the function and 
survival of luminal or non-luminal BC cells could be impacted by 
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some specific chemical elements which were capable of regulating 
necroptosis [26-28]. Hence, regulation of necroptosis could be a 
brand-new approach for anti-TNBC therapy. 

Long non-coding RNAs (lncRNAs) are a large family of 
endogenous RNAs specifically enriched in exosomes and each 
lncRNA has more than 200 nucleotides [29]. LncRNAs do not 
code for protein production [30]. LncRNAs in human tissues 
have been increasingly explored via bioinformatics and second-
generation sequencing techniques [31]. In TME, lncRNAs 
regulate gene expression, affecting variety of biological process 
of cancer cells including proliferation, differentiation, migration, 
cell death, invasion and metastasis, and drug resistance [30,32,33]. 
Previous studies found that lncRNA could also indirectly affect 
necroptosis by different pathways. In a study from Germany, 
researchers found that an intergenic lncRNA, Linc00176, exerted a 
protective function for hepatocellular (HCC) cells by maintaining 
the capability of proliferation and survival of cancer cells [34]. In 
a non-tumor model, scientists have shown that a lncRNA called 
necrosis-related factor (NRF) was capable of targeting RIPK1/
RIPK3 and miR-873 to control necroptosis. miR-873 inhibited 
necrotic death of cardiomyocytes via inhibiting protein production 
of RIPK1/RIPK3 [35]. Nevertheless, whether lncRNAs contribute 
to TNBC invasion and proliferation is still unclear. Further intense 
investigation of necroptosis-related lncRNAs is necessary for more 
precise and individualized management for TNBC. In this study, 
we aim to explore remarkable necroptosis-related genes (NRGs) 
of TNBC as well as related lncRNAs. Subsequent risk model was 
built based on these genes to predict prognosis of BC patients.  

Materials and methods

Data downloading and pre-processing 

Transcriptome RNA-seq datasets [HTseq-Counts and 
Fragments Per Kilobase of exon model per Million mapped 
fragments (FPKM)] of female BC were downloaded from The 
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/). 
Corresponding clinical data were acquired from cbioportal (https://
www.cbioportal.org/). Gene expression matrices from HTseq-
Count FPKM files were created via the strawberry perl algorithm 
(perl 5, version 30). The Count matrix was used to filter the 
differentially expressed coding genes between TNBC and NTNBC 
samples, while the FPKM matrix was used for identification 
of DEG-correlated lncRNAs as well as other analysis. After 
excluding 12 male samples, 112 normal samples, and 183 samples 
with unknown state of BC immunohistochemistry (ER, PR, HER-
2), 901 samples were used for DEG analysis. For prognosis and 
immune response studies, 779 female BC samples without unclear 
clinicopathological information (age, race, staging, subtype, 
surgery, survival time, etc) were finally included (Supplementary 
Figure 1). 

Source of NRGs and identification of NRG-related lncRNA

226 NRGs were collected from: 1) M24779.gmt in GO 
gene sets downloaded from the website of Gene Set Enrichment 
Analysis (GSEA) (http://www.gsea-msigdb.org/gsea/msigdb/
search.jsp)[36-38]; 2) map04217 from Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway (https://www.genome.jp/
dbget-bin/get_linkdb?-t+orthology+path:map04217); 3) previous 
literature [39]. DEG analysis was conducted by R package 
“edgeR” with the filter criterion of log2 fold change (FC) | >1, 
false discovery rate (FDR) <0.05, and adjusted p value <0.05. 
After DEG analysis, NRGs with significantly different expression 
were acquired. For lncRNA data, GENCODE annotation file was 
used to collect all lncRNAs from the transcriptome matrix via the 
strawberry perl algorithm. Then correlation analysis was conducted 
between necroptosis-related DEGs and lncRNAs using Pearson’s 
correlation algorithm. 154 lncRNAs with correlation >0.4 and p 
value <0.001 was identified as necroptosis-related lncRNAs. The 
above screening process was performed via R package “limma”. 

Prognosis-associated lncRNAs and establishment of a 
prognostic prediction model

We merged the clinical data and data of expression of 
necroptosis-related lncRNAs. The merged file had 864 BC samples. 
Then we divided these samples into two subgroups with 1:1 ratio. 
One group was called as “training set” and the other one was called 
as “testing set”. In the training set, univariate Cox regression 
analysis was preliminarily performed to select prognostic-
classified lncRNAs with p value <0.1. Least absolute shrinkage 
and selection operator (LASSO) regression was subsequently 
performed to filter prognosis-related lncRNAs with 10-fold 
cross-validation and 1,000-cycle running as well as a p value of 
0.05. Then the prediction model was created by multivariate Cox 
regression analysis in the training set, and then the model was 
used to predict the risk of each sample in the training and testing 
set, respectively. The risk score was calculated by the following 
formula: 

Risk score=  (1), in 
which “expr” stands for the expression of lncRNA in each sample 
while “coef” stands for the coefficient of lncRNAs correlated with 
survival. Median risk scores in both sets were calculated to evaluate 
the risk of each sample as either “high” or “low” risk so that the 
samples would be stratified into low-risk or high-risk groups. 
Clinicopathological variables including age, race, subtype, and 
type of surgery were evaluated by multi-Cox regression analysis 
to select potential predictors for nomogram preparation. Receiver 
operating characteristic (ROC) curves were created to measure the 
quality of prediction of model. The above analysis was completed 
via R packages “survival”, “rms”, “foreign”, “caret”, “glmnet”, 
“survminer”, and “timeROC”. Survival analysis between high- 

https://www.cbioportal.org/
https://www.cbioportal.org/
http://www.gsea-msigdb.org/gsea/msigdb/search.jsp
http://www.gsea-msigdb.org/gsea/msigdb/search.jsp


Citation: Zhao Z, Diao X, Cao Q, Lu X (2023) Differential Expression of Necroptosis-Related Genes with regulating lncRNA in Triple Negative Breast 
Cancer to Predict Prognosis and Immunotherapy Response. Ann med clin Oncol 5: 144. DOI: https://doi.org/10.29011/2833-3497.000144

4 Volume 6; Issue 01

and low- risk groups was conducted with R packages “survival” 
and “survminer”. 

Construction of nomogram and calibrated plots

Nomogram was produced according to the results of 
multivariate Cox regression analysis. Clinicopathological features 
with p value <0.05 were included in the nomogram. Based on 
each point derived from every variable, a total point of each 
sample could be acquired so that the nomogram could predict 
1-year, 3-year, 5-year, and 10-year survival rates. To evaluate 
the predictive accuracy of the nomogram, 1-year, 3-year, 5-year, 
and 10-year calibrated plots were illustrated. R packages “rms”, 
“survival”, and “foreign” were used in this analysis. 

GSEA analysis

According to high-risk and low-risk group in all 864 
available BC samples, we classified differentially expressed KEGG 
pathways into different groups through Gene Set Enrichment 
Analysis software (GSEA, version 4.1.0, Broad Institute, Inc., 
Massachusetts Institute of Technology, and Regents of the 
University of California, USA)[36-40]. Amongst, 91 biological 
functions and pathways were active in high-risk group, while 87 
biological functions and pathways were active in low-risk group. 
We selected each five significantly enriched biological process 
and pathways in high-and low-risk group, respectively, based on p 
value< 0.05 and FDR< 0.25. 

Comparison of immune landscape between high-risk and low-
risk groups

For correlation between immune cell infiltration and risk 
score, we firstly downloaded the immune cell infiltration file from 
TIMER (http://timer.cistrome.org/) [41-43]. This file includes data 
of tumor-infiltrating immune cells derived from several types of 
algorithms (XCELL, TIMER, QUANTISEQ, MCPCOUNTER, 
EPIC, and Cibersort). Using Spearman correlation test, we 
calculated correlations of different immune cells with different 
risk scores, which is illustrated in a bubble chart. Immune-cell 
infiltration was furtherly assessed by single sample gene set 
enrichment analysis (ssGSEA) and major immune functions were 
also evaluated between high-risk and low-risk group. ssGSEA 
and its visualization was performed with the help of R packages 
“GSVA”, “limma”, “GSEABase”, “ggpubr”, and “reshape2”. 

TME and immunotherapy response between high-risk and 
low-risk groups

Based on Estimate algorithm, we evaluated the TME status 
by calculating immune score, stromal score, and ESTIMATE score 
(immune score + stromal score). Then we compared these scores 
between high- and low-risk groups [44]. We collected immune 
checkpoint molecules from ImmPort website (https://www.
immport.org/shared/genelists) and extracted their expression levels 
from FPKM file [45,46]. Then we compared their expressions 
between patients with different risk levels. Finally, potential 
efficacy of immunotherapy [anti- programmed death-1 (PD-1) 
and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) 
monoclonal antibodies] in the two groups were evaluated by using 
data of immunophenoscore (IPS) from the Cancer Immunome 
Atlas (TCIA, https://tcia.at/home)[47,48]. IPS is an effective 
predictor of treatment response to immune checkpoint inhibitor 
(ICI), anti-CTLA-4/anti-PD-1 antibodies. Its calculation is based 
on four categories of immunogenicity: expression of effector 
cells (CD4+ T cells, activated CD8+ T cells, and memory CD4/
CD8+ T cells), immunosuppressive cells (regulatory T cells and 
myeloid-derived suppressive cells), major histocompatibility 
complex (MHC) molecules, and immunomodulators. Previous 
results showed that IPS was associated with several kinds of solid 
malignancies including BC [49]. 

The complete process of statistical analysis was performed 
by R software 4.0.4 (R Foundation for Statistical Computing, 
Vienna, Austria). 

Results

DEG analysis of necroptosis-related genes and associated 
lncRNAs

According to the clinical data from cbioportal, we divided 
the 901 female BC samples into two groups: NTNBC group 
(N=786) and TNBC group (N=115). For 226 NRGs, 203 genes 
were finally included in analysis. Seven NRGs were DEGs, among 
which two genes [phospholipase A2 group IVE (PLA2G4E), 
histone deacetylase 9 (HDAC9)] were upregulated in TNBC 
samples whereas the other 5 genes (H2AC 4/12/14/20/21) were 
downregulated in TNBC samples (Table 1). Through correlation 
analysis, 153 NRG-related lncRNAs were obtained, which is 
illustrated as a network plot (Figure 1).

http://timer.cistrome.org/
https://www.immport.org/shared/genelists
https://www.immport.org/shared/genelists
https://tcia.at/home
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Log2FC logCPM P-Value FDR

HDAC9 1.354052 9.650208 3.02×10-22 5.58×10-20

H2AC14 -1.74302 3.956773 4.07×10-07 3.77×10-05

H2AC20 -1.05981 6.545059 2.52×10-06 0.000117

H2AC4 -1.56114 3.309498 1.03×10-05 0.000382

H2AC12 -1.4443 3.925882 3.21×10-05 0.000988

H2AC21 -1.22542 4.482318 0.000315 0.008333

PLA2G4E 1.026152 4.51469 0.000374 0.008647

Table 1: List of differentially expressed necroptosis-related genes; CPM counts per million, FC fold change, FDR false discovery rate, 
HDAC Histone deacetylase 9, PLA2G4E Phospholipase A2 group IVE.

Figure 1: Network between differentially expressed NRG and NRG-related lncRNA; lncRNA long non-coding RNA, NRG necroptosis-
related gene. Lines between two nodes indicate significant correlations between lncRNA and NRG.

Construction of a prognostic prediction model for risk assessment

The complete process of model construction was conducted in the training set (N=432). Twelve NRG-related lncRNAs were 
significantly associated with prognosis according to univariate Cox regression analysis (Figure 2A). Seven of them were indicative 
of poor prognosis while the other five suggested a protective element of prognosis. Ten lncRNAs with significantly association with 
prognosis were acquired by LASSO analysis (Figure 2B-2C). Ultimate six prognosis-related lncRNAs were resulted from multivariate 
Cox analysis, in which expression of three lncRNAs [Z68871.1, SPRY4-AS1, AC011247.1, hazard ratio (HR)>1] were high-risk 
elements for prognosis and the other three played a protective role in prognosis (COL4A2-AS1, CCDC144NL-AS1, ADAMTS9-AS2, 
HR<1) (Figure 2D). Based on the results of multi-Cox regression, we obtained a risk score of each sample in the training set using the 
formula below: 
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Figure 2: Construction of a risk model with prognostic necroptosis-related lncRNAs. (a) Forest plot of univariate Cox regression 
analysis of prognosis-related lncRNAs; (b) 10-fold cross-validation for selection of variables in the LASSO model; (c) The LASSO 
coefficient profile of ten survival-associated lncRNAs; (d) Forest plot of multivariate Cox regression analysis of six prognosis-related 
lncRNAs; LASSO least absolute shrinkage and selection operator, lncRNA long non-coding RNA.

Risk score= expr (COL4A2-AS1) * (-2.872) + expr (CCDC144NL-AS1) * (-0.887) + expr (ADAMTS9-AS2) * (-2.694) + expr 
(AC011247.1) * (1.232) + expr (SPRY4-AS1) * (0.767) + expr (Z68871.1) * (0.763). (2) 

Then we used this formula to calculate the risk score of samples in the testing set. In both groups, samples were stratified into high-
risk and low-risk levels according to the median risk score (Supplementary Figure 2A-C). Survival analysis suggested that patients in 
high-risk group had a significant poorer overall survival than those of low-risk group, no matter in the training or testing set (Figure 3A-
3C, Supplementary Figure 2D-2F). Heatmap reaffirmed the results that lncRNAs Z68871.1, SPRY4-AS1, and AC011247.1 were highly 
expressed in high-risk groups while the other three lncRNAs COL4A2-AS1, CCDC144NL-AS1, and ADAMTS9-AS2 were highly 
expressed in low-risk groups, no matter in training, testing or the complete datasets, suggesting their prognostic meaning (Supplementary 
Figure 2G-2I). The association of clinicopathological factors other than risk scores with overall survival was analyzed and the results 
showed that risk score together with age, tumor stage, subtype, and type of surgery were independent risk factors of overall survival. 
Multi-Cox regression analysis demonstrated that older age, higher staging of BC, TNBC, and more invasive operation of BC were 
indicative of a poorer prognosis (Figure 3D-3E). 
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Figure 3: Prognostic analysis of risk model in different sample sets. (a-c) Kaplan–Meier survival curves of overall survival of breast 
cancer patients between high- and low-risk group in training, testing, and entire samples sets, respectively; (d-e) Forest plots visualizing 
independent clinicopathological variables of overall survival in the entire sample set.

ROC curves illustrating the area under curve (AUC) in terms of 1-, 3-, 5- , and 10-year were 0.718, 0.623, 0.670, and 0.720 (Figure 
4A). Regarding 10-year ROC curves of the model, the AUC of the variable “risk score” was larger than any other clinicopathological 
variables (AUC=0.720), illustrating a relatively powerful predictive capability (Figure 4B). The HR of risk score in uni- and multivariate 
Cox model was 1.208 and 1.236, respectively (both p value<0.0001). 

Figure 4: ROC curves of the risk model in different comparisons. (a) 1-, 3-, 5-, 10-year ROC curves of the model in complete sample 
set; (b) 10-year ROC curves for different clinicopathological variables; AUC area under curve, ROC receiver operating characteristic.

Nomogram construction and calibration plot assessment

Based on the results of the multivariate Cox model for survival analysis, we brought variables “risk score”, “age”, “stage”, 
“subtype”, and “type of surgery” into the nomogram, a visualization tool for prediction of 1-year, 3-year, 5-year, and 10-year survival 
rate (Figure 5A). Calibration plot demonstrates that the nomogram exhibited an excellent concordance with prediction (Figure 5B). 
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Figure 5: Nomogram of the model and the calibration curves for model validation. (a) Nomogram of the model for prediction of 1-, 
3-, 5-, and 10-year overall survival; (b) calibration curves validating the prediction of 1-, 3-, 5-, and 10-year overall survival; Lump 
lumpectomy, Mast simple mastectomy, MRM modified radical mastectomy, NTNBC non-triple-negative breast cancer, OS overall 
survival, TNBC triple-negative breast cancer.

Biological pathway analysis

Through GSEA analysis, we summarized different KEGG biological process and pathways in high-risk (N=417) and low-risk 
(N=447) groups. Each five of significantly enriched biological functions and/or pathways were collected from high- and low-risk groups, 
respectively. Amongst, high-risk groups included DNA mismatch repair, DNA replication, nucleotide excision repair, RNA degradation, 
and cell cycle regulation; low-risk groups included cytokine receptor interaction, calcium signaling pathway, TGF-β signaling pathway, 
regulation of actin cytoskeleton, and cancer pathway (Figure 6).

Figure 6: GSEA analysis of the top five KEGG biological pathways in high- and low-risk groups, respectively. GSEA Gene Set 
Enrichment Analysis, KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Comparison of immune signature, TME between high- and low-risk groups

Through ssGSEA, significant discrepancy of immune cell abundance could be found between high- and low-risk groups, especially 
cytotoxic T cells, B cells, natural killer cells (NK cells), dendritic cells (DCs), and neutrophils. Low-risk group had a higher immune cell 
infiltration than its counterpart (Figure 7A), which is in line with the result of the activity of major immune functions (cytolytic activity, 
T-cell costimulation, and interferon response, etc.) between the two groups (Figure 7B). 

Figure 7: ssGSEA analysis of immune landscapes in high- and low-risk group in the entire sample set. (a) Enrichment level of major 
immune cells in samples from high- and low-risk groups; (b) Activity level of typical immune functions or pathways between high- and 
low-risk groups; aDC activated dendritic cell, APC antigen presenting cell, CCR chemokine receptor, DC dendritic cell, HLA human 
lymphocyte antigen, iDC immature dendritic cell, IFN interferon, MHC major histocompatibility complex, NK cell natural killer cell, 
pDC plasmacytoid dendritic cell, ssGSEA single sample Gene Set Enrichment Analysis, Tfh follicular helper T cell, Th helper T cell, 
TIL tumor-infiltrating lymphocyte, Treg regulatory T cell; ***, p<0.001; **, p<0.01; *, p<0.05.

Correlation analysis between immune cell infiltration and risk score was also performed and data were derived from several 
algorithms (XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, and CIBERSORT, Figure 8A). Take TIMER algorithm for 
instance, scatter plots demonstrate that T cells (CD4+, CD8+), B cells, DCs, and neutrophils were all negatively correlated with the risk 
score which corroborated the results of ssGSEA above (Figure 8B-8F).  
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Figure 8: Correlation of major innate and adaptive immune cell infiltration with different risk scores in the entire sample set. (a) Bubble 
plot demonstrating the correlation between immune cell infiltration with risk score via different various algorithms; (b-f) correlation 
of infiltration scores of CD4+ T cells (b), CD8+ T cells (c), B cells (d), myeloid Dendritic cells (e), and neutrophils (f) with risk scores.

Furthermore, we calculated immune scores and stromal scores for each BC patients and the boxplots show that patients with higher 
risk had lower immune/stromal/ESTIMATE scores than patients with lower risk (Figure 9A-9C). 

Figure 9: Comparison of tumor microenvironment of samples in entire sample sets between groups with different risk levels. (a) 
Comparison of immune cell infiltration between high- and low-risk group; (b) Comparison of stromal cell infiltration between high- and 
low-risk group; (c) Comparison of ESTIMATE score between high- and low-risk group. ESTIMATE score is the sum of the immune 
and stromal score.

Comparison of immune checkpoint molecules and potential immunotherapy response between different risk levels

47 immune checkpoint molecules were collected and the expression of these genes were extracted from the original FPKM file 
of female BC samples. We compared the expression level of these genes between high- and low-risk group, which is demonstrated in 
Figure 10. 
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Figure 10: Expression of typical types of immune checkpoint molecules between high- and low-risk groups in the entire sample set; 
***, p<0.001; **, p<0.01; *, p<0.05.

Results showed that expression of genes in low-risk group were higher than that of high-risk group except CD80. IPS of patients 
in high/low-risk groups were obtained. Score 2 (IPS-PD-1/PD-L1/PD-L2 blocker), score 3 (IPS-CTLA-4 blocker), and score 4 (IPS- 
PD-1/PD-L1/PD-L2 and CTLA-4 blocker) in low-risk group were significantly higher than those in high-risk group (Figure 11A-11D), 
suggesting a better expected response of ICIs (anti-PD-1/anti-CTLA-4 monoclonal antibodies) in the former group. The results were 
consistent with the counterpart of immune landscape and TME mentioned in the previous section.
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Figure 11: Comparison of IPS of anti-PD-1 and anti-CTLA-4 monoclonal antibody between high- and low-risk group in the entire 
sample set. (a) pure IPS-1 score between two groups; (b) IPS-1/PD-1 blocker score between two groups; (c) IPS-1/CTLA-4 blocker 
score between two groups; (d) IPS-1/PD-1/CTLA-4 score between two groups; CTLA-4 cytotoxic T lymphocyte-associated antigen-4, 
IPS immunophenoscore, neg negative, pos positive, PD-1 programmed death-1.

Discussion

In our study, seven DEGs were found related to necroptosis 
between NTNBC group and TNBC group. Amongst, PLA2G4E 
and HDAC9 were upregulated in TNBC samples while H2AC 
4/12/14/20 were downregulated in TNBC samples. PLA2G4E 
belongs to the cytosolic phospholipase A2 group IV family. This 
group of genes regulate membrane tubule-mediated transport. 
Proteins produced by this gene get involved in recreating tubules 
to move specific cargo molecules back to cell surface (see details 
in https://www.ncbi.nlm.nih.gov/gene/123745). Previous studies 
have found that PLA2G4E was related to necroptosis. Inhibition of 
PLA2G4E by microRNA Mir504-5p reduced necroptosis of skin and 

prolonged survival of skin cells [50]. Previous studies have found 
that inactivated function of RIPK1, RIPK3, and MLKL, especially 
by the necroptosis inhibitor Nec‐1, protected neurons from being 
damaged, degenerated, and keeping the viability of neural cells 
in these neurodegenerative diseases [51-55]. In an animal model 
of Alzheimer´s disease, PLA2G4E served as a protective role 
for the survival of cerebral tissue. Overexpression of PLA2G4E 
could resume memory and cognition, indicating a potential role 
in treatment of neural degenerative disease [56]. It is worthwhile 
to further explore relationship between this gene and necroptosis 
in neurodegenerative diseases. HDAC9 is a member of the class 
IIa family of histone deacetylases. This gene family get involved 
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in gene silencing by modifying chromatin into a transcriptionally 
repressed conformation. HDAC9 are expressed in many human 
tissues and organs, especially in brain and skeletal muscles 
[57,58]. HDAC9 negatively regulates muscle differentiation by 
interacting with myocyte enhancer factor (MEF2) and inhibiting 
its transcriptional activity [59]. Similar to PLA2G4E, HDAC9 
also plays a protective role in the nervous system. One study has 
found that reduced expression of HDAC9 caused death of neural 
cells [60]. HDAC9 possesses several functions in carcinogenesis 
as well. It has been found to be upregulated in various types of 
tumors including BC, hepatocellular carcinoma, pancreatic cancer, 
osteosarcoma, and hematological malignancies [4, 61-65]. In BC, 
researchers found that overexpression of HDAC9 was associated 
with metastasis and poor prognosis [62]. HDAC9 upregulated 
NF-κB expression and its downstream inflammatory pathways, 
stabilizing TME and leading to recurrence of BC [61]. Another 
study led by Salgado et.al found that HDAC9 was overexpressed 
in TNBC, which was consistent with our results [66]. HDAC 
contributed to increased invasion and angiogenesis in TNBC 
tissues via VEGF and MAPK3  signaling pathway, which is 
negatively affected by miR-206. A bench study from China using 
genome-wide CRISPR screening found that HDAC9 was a pivotal 
molecule in regulating paclitaxel-resistance of TNBC. Inhibition 
of HDAC9 caused tubulin instability and cell cycle arrest, leading 
to cancer cell death and increasing the sensitivity to chemotherapy 
[67]. Other related studies also found that HDAC9 suppressed the 
expression of Erα and endowed antiestrogen-resistance to BC cells 
[68]. These results indicated a potential HDAC-targeting therapy 
in the treatment of TNBC to suppress its aggression and improve 
the sensitivity of TNBC to systemic therapy. Different from the 
upregulated genes, the significantly downregulated NRGs in 
TNBC samples were all H2A clustered genes. Proteins encoded 
by these genes were all belong to replication-dependent histone 
H2A family (see https://www.ncbi.nlm.nih.gov/gene/8338). A 
study led by Su found that H2AC was upregulated in ER-positive 
BC. Suppression of this replication-dependent histone H2A 
isotype caused abnormal estrogen signaling and cell cycle arrest 
of BC [69]. In another study, the authors also furtherly found that 
H2AC was related to telomeres in human cells and interacted with 
telomeres protein 1 (POT1) as well as  telomere repeat factor 2 
(TRF2). Depletion of H2AC would dysfunction the telomere, 
destabilize chromosome structure, and cause DNA damage [69]. 

According to the correlation analysis, 153 lncRNAs 
were significantly associated with six of the seven necroptosis-
related DEGs (PLA2G4E did not appear in the network). After 
univariate Cox regression, LASSO regression, and multivariate 
Cox regression analysis, final 6 prognosis-related lncRNAs were 
brought into the risk prediction model, including Z68871.1, 
SPRY4-AS1, AC011247.1, COL4A2-AS1, CCDC144NL-AS1, 
and ADAMTS9-AS2. Several bioinformatic studies found that 

high expression of Z68871.1 and SPRY4-AS1 were correlated 
with worse OS in solid tumors including BC, HCC, and squamous 
cell carcinoma [69-73]. High expression of ADAMTS9-AS2 was 
related to a better treatment response and prognosis in BC [74,75], 
which was coherent with our results. However, high expression 
of COL4A2-AS1, CCDC144NL-AS1, and ADAMTS9-AS2 were 
related to proliferation and worse prognosis of breast, gastric, 
colorectal cancer, HCC, and lung cancer [76-81]. Given that 
details about functions and involved pathways are unclear, more 
intense research should be conducted to explore the role of these 
lncRNAs in BC.

According to the expression and coefficient of lncRNAs, 
we constructed the model and measured the risk scores for each 
sample in the training set and testing set. Samples in both sets were 
stratified into two subgroups: high-risk group and low-risk group. 
Survival analysis in both sets were similar that patients in high-risk 
group had a worse prognosis compared with low-risk counterparts. 
In addition to risk score, age, tumor stage, subtype, and type of 
surgery were all independent variables for prognosis. Nomogram 
including these variables was created to predict 1-, 3-, 5-, and 
10-year survival rates for BC patients. Predictive efficacy was 
testified by ROC curves and calibration plots. Results showed that 
risk score was the best independent predictor of overall survival. 

Based on the results of GSEA, we found that significantly 
enriched biological pathways were focused on cell cycle, cellular 
metabolism, and cellular proliferation as well as other special 
pathways including TGF-β and Ca2+ signaling pathways. These are 
important pathways that necroptosis gets involved in. For instance, 
tumor-induced endothelial necroptosis triggered tumor cell 
extravasation and metastasis. TGF-β-activated kinase 1 (TAK1) 
could inhibit necroptosis of endothelial cells [82,83]. Studies 
also found that dysfunction or deficiency of TAK1 enhanced the 
necroptosis in which RIPK3 was upregulated [84]. In another 
study, scientists found that thymoquinone, an apoptosis-inducing 
agent with anticancer activity, could also induce necroptosis 
through elevating cytosolic calcium concentration by endoplasmic 
reticulum calcium depletion and activation of store-operated 
calcium entry (SOCE) in lymphoma cell [85]. 

We compared the immune signatures of BC samples between 
high-risk and low-risk group. Results showed that low-risk group 
had higher level of immune cell infiltration, higher immune, and 
stromal scores, and higher expression level of immune checkpoint 
molecules. However, expression of CD80 was lower in low-risk 
group than that in high-risk group. Also named as B7-1, CD80 
could not only bind to immune-stimulating signaling molecule 
CD28 but also combine with immunosuppressive molecule CTLA-
4 [86]. As reported, the affinity of CD80 to CTLA-4 was higher 
than that to CD28, providing its immune-inhibiting feature [87]. A 
study led by Arutha Kulasinghe found that patients with refractory 
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TNBC had a higher level of CD80 [88], corroborating with our 
results. More investigation should be performed to validate this 
conclusion. Correlation analysis illustrates that the abundance of 
immune cells (DCs, innate, and adaptive immune cells) was all 
inversely proportional to the risk score. The above results were 
consistent with the immunotherapy response prediction that low-
risk group had a potentially better response to PD-1 and CTLA-4 
monoclonal antibodies. Necroptosis not only directly eliminates 
tumor cells by promoting cell death, but also indirectly suppress 
tumor growth and proliferation by inducing immune response in 
TME [89]. During necroptosis, rupture of the plasma membrane 
led to outpouring damage associated molecular patterns (DAMPs) 
into intercellular space, then necroptotic cells recruited immune 
and inflammatory cells to clear the cell debris and helped tissue 
repair [89,90]. Animal studies showed that CD8+ T cells and 
NKT cells played major roles in necroptosis-inducing immune 
response [91,92]. Necroptotic cells offered tumor antigens and 
inflammatory stimuli to antigen-presenting cells (APC), which 
then activated CD8+ T cells by antigen cross-priming [93]. CD8+ 

T cells exerted antitumor cytotoxic immunity by producing and 
secreting multiple cytokines. The above biological process was 
highly dependent on RIP1 and NF-κB signaling [91]. Different 
from CD8+ T cells, NKT-induced immune responses were RIPK3-
dependent, of which downstream signaling mediated by pGAM5 
and Drp1 [92]. Counterintuitively, some researchers suggested that 
inflammation derived from necroptosis was a pro-cancer factor in 
TME [94]. In the process of carcinogenesis, inflammation could 
promote tumor cell growth, proliferation, aggressiveness, invasion, 
and metastasis by providing bioactive molecules [90,95,96]. ROS 
and other mutagenic chemicals also facilitated evolution of tumor 
cells by genetic alterations [90]. Given that the above conclusions 
were controversial, the contribution of immune and inflammatory 
responses induced by necroptosis in tumor prevention and 
development needs to be further elucidated. 

Despite a comprehensive analysis of necroptosis in TNBC 
and its relationship with prognosis and immune landscape, some 
limitations still existed in our study. Firstly, the results were 
not further validated in basic studies (in vitro and in vivo). The 
biological functions of prognosis-related lncRNAs were needed 
to be clarified. Secondly, different extents of biases during data 
processing and case inclusion/exclusion were inevitable because 
of a retrospective feature of this study. Thirdly, the expression 
of PD-1 (CD279) and PD-L1 (CD274) were not included in the 
original transcriptome data file of TCGA-BRCA. Hence, we failed 
to directly compare the expression level of these two biomarkers 
between high- and low-risk groups though data of anti- PD-1 and 
PD-L1 response could be retrieved from TCIA database.

To conclude, seven differentially expressed NRGs were 
selected between NTNBC and TNBC groups. Six NRG-related 
lncRNAs were significantly associated with prognosis and were 

brought into risk model construction. Risk score is an excellent 
predictor for overall survival of BC and the model was of high 
predictive quality. Compared with low-risk group, high-risk group 
has a gloomier prognosis, less abundance immune cell infiltration, 
and less responsive ICI treatment. The results pave way for further 
exploration of precision therapy for TNBC. 
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Supplementary Figure 1. Flow diagram of included TCGA female breast cancer samples with available immunohistochemistry status 
and clear clinicopathological information for further analysis. 

TCGA, The Cancer Genome Atlas



Citation: Zhao Z, Diao X, Cao Q, Lu X (2023) Differential Expression of Necroptosis-Related Genes with regulating lncRNA in Triple Negative Breast 
Cancer to Predict Prognosis and Immunotherapy Response. Ann med clin Oncol 5: 144. DOI: https://doi.org/10.29011/2833-3497.000144

19 Volume 6; Issue 01

Supplementary Figure 2. Basic characteristics, survival analysis, and prognostic lncRNA of risk model. (a-c) Distribution of risk score 
in training (a), testing (b), and entire sample set (c); (d-f) Illustration of survival time and end-point vital status of patients in training 
(d), testing (e), and entire sample set (f); (g-i) heatmap of expression of six prognostic lncRNAs in high-risk and low-risk group from 
training (g), testing (h), and entire sample set (i).
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