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Abstract
Periodontitis is a common inflammatory condition that results in destruction of tooth supporting tissues. Studies have 

demonstrated the regenerative potential of mesenchymal stem cells and biomaterials that induce healing and promotion of repair 
of the periodontal tissue.

Recently, natural compounds have been identified as good candidates for drug development due to their immunomodulatory 
and healing properties. Specifically, curcumin has been shown to have anti-cancer, antibiotic and anti-inflammatory functions 
and has been reported safe and efficient for treatment of many diseases. In this study we investigate curcumin and ones of its 
metabolites, tetrahydrocurcumin, to identify a potential natural candidate that can contribute to the healing of periodontal tissue 
and promote its regeneration.

In this study, human PDL and Gingival epithelial cells were treated with curcumin and tetrahydrocurcumin. Using RNA 
sequencing we investigated the pathways that were affected in these cell types. We show that curcumin and tetrahydrocurcumin 
promote Wnt signaling pathway, upregulate TGF-beta regulation of extracellular matrix. Curcumin promotes organization of 
extracellular matrix in PDL cells and cell migration, differentiation, and angiogenesis in gingival epithelial cells.

The results of this study suggest that curcumin and its metabolite exhibit anti-inflammatory and have regenerative potential 
on PDL and gingival epithelial cell. Particularly, curcumin can be a low-cost, well-tolerated and effective natural candidate for 
therapeutic approaches in periodontal tissue. Further in vivo screening of this compound is required to confirm the optimum 
biological activity and to harness its full potential in clinical application.
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Introduction
Periodontitis, the inflammation of the supporting tissues of 

the dentition, is one of the most predominant diseases affecting 
the oral cavity. The goal of periodontal treatment is to control 
inflammation and restore structure and function of periodontal 
tissues including alveolar bone, gingiva, and the Periodontal 
Ligament (PDL). An efficient treatment has long been one of the 
main aims of dentistry since disease progression can lead to tooth 
morbidity and loss.

Therapeutic potential of mesenchymal stem cells has been 
shown in regeneration of periodontal tissues [1-6]. Recognition 

of tissue heterogeneity and various populations of resident stem 
cells in periodontal tissue has opened new avenues for effective 
regenerative treatment for periodontitis [7-12]. Various advanced 
biomaterials can assist in this process by serving as delivery 
vehicles or scaffolds [13-15]. Despite their many advantages, 
use of stem cell-based therapies has numerous issues including 
immune rejection, long term storage, transport and overall 
cost [16]. Low toxicity, availability and affordability of natural 
compounds has rendered them an alternative to stem cell therapies 
in regenerative medicine. Additionally, natural compounds have 
anti-inflammatory, wound healing and antioxidant activity in 
vivo which contributes to their application in tissue regeneration 
[16-19]. Studies have shown effective use of herbal medicines in 
treatment of various conditions. For example, Ithonia diversifolia 
extract can be used for treatment of diabetes and wound healing 
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[20]. Plant-based antimicrobials can be applied against oral 
bacteria [21]. Acacia arabica, a blend of calcium, magnesium, and 
potassium has antibacterial activity in gingivitis [22-25]. 

Curcumin, a traditional natural herbal medicine has been 
proven to be a novel treatment to promote wound healing. 
Curcumin-derived compounds have shown antioxidant, 
anti-inflammatory, anticancer, antiviral, neurological, and 
immunological characteristics. Independent studies have shown 
that these compounds can promote regeneration in various tissues 
[26–28]. Tetrahydrocurcumin is one of the major metabolites 
of curcumin that exhibits similar pharmacological activities to 
curcumin but targets different signalling pathways and cellular 
responses [29-31]. 

Novel stem cell technologies and bioactive scaffolds have 
been promising to enhance the periodontal regeneration however, 
few studies have identified the signalling pathways affected 
following treatment with natural compounds in periodontal tissue.

In this study we investigate the effect of curcumin and 
tetrahydrocurcumin on human PDL and gingival epithelial cells 
to find candidates that can stimulate regenerative pathways in 
PDL and Gingival epithelial cells and be used as effective natural 
candidates in treatment of periodontitis.

Materials and methods

Cell culture

Primary Human PDL Cells (hPDL) used in these assays 
were a kind donation from Dr. Ana Angelova in King’s College 
London. Original cell harvest experiments were undertaken with 
the understanding and written consent of each subject and in 
full accordance with World Medical Association Declaration of 
Helsinki (version 2002). The study was approved and followed 
the guidelines set by the Ethical Committee for human studies at 
King’s College Hospital, King’s College University of London. 
hPDL cells were used at passage [2-3]. These cells were expanded 
in DMEM high glucose, 10%FBS, 1% L Glutamine and 1% 
Penicillin/Streptomycin. 

Primary Human Gingival Cells (HGEP) were purchased from 
CELLnTEC, advanced cell systems (CnT Gingival Epithelium 
Progenitors, Adult, Pooled). HGEP were used at passage [2-3]. 
These cells were maintained and expanded in specialized epithelial 
media by CELLnTEC, CNT-PRIME (#CNT-PR).

Viability

For each cell type 20000 cells/cm2 were plated in triplicate 
96 well plates and incubated in cell culture incubator (37°C, 5% 
CO2) for 24h. We used a range of concentrations of curcumin and 
tetrahydrocurcumin (0.5-10 µM) to treat hPDL and hGEP cells. 
Dimethylsulfoxide (DMSO) was used as vehicle-only control in 
all the experiments. Cell viability was assessed by MTS Assay 
Kit (Cell Proliferation, Colorimetric, ab197010) after 24 hr 

following manufacturers instruction. A colorimetric plate reader 
(Thermo Multiskan Ascent 354 microplate reader) was used to 
read the absorbance at 490 nm. Normal distribution of results 
was tested with Shapiro-Wilk test. Statistical significance against 
100% viability in Media was reported using one-way ANOVA 
and Dunnett’s multiple comparisons in GraphPad Prism 8.3.0. 
Adjusted P value is reported in graphs according to New England 
Journal of Medicine guidelines: P<0.001 (***), P<0.002 (**), 
P<0.033 (*), P>0.12 (ns). 

QPCR

For each cell type 50000 cells were plated in triplicate in 
24-well plates and incubated for 24 hrs (37◦C, 5% CO2/95% air, 
100% humidity) using standard culture medium. Media only, 
DMSO (vehicle only) and Bio 50 nM (positive control for Wnt 
signalling pathway) from Sigma, St. Louis, MO, USA were used 
as controls. Following 24 hr treatment, cells were lysed with Trizol 
for extraction of RNA. RNA was reverse transcribed using random 
primers (M-MLV Reverse Transcriptase kit, Promega, Madison, 
WI, USA) according to the manufacturer’s instructions. Gene 
expression was then assayed by real-time qPCR using Syber Green 
(Roche, Basel, Switzerland) on a Rotor-Gene Q cycler (Qiagen, 
Hilden, Germany) system. Beta-actin was used as housekeeping 
gene (Forward-GGCTGTATTCCCCTCCATCG, Reverse-
CCAGTTGGTAACAATGCCTGT) and Axin2 as the read-out for 
Wnt pathway activity (Forward-TGACTCTCCTTCCAGATCCCA, 
Reverse-TGCCCACACTAGGCTGACA. Reactions were 
performed in triplicate and relative changes to housekeeping gene 
expression were calculated by the 2−∆∆C T method where CT 
is the threshold cycle. Groups were then analysed with one-way 
ANOVA followed up with multiple comparison tests in GraphPad 
Prism 8. Adjusted P value is reported in graphs according to New 
England Journal of Medicine guidelines: P<0.001 (***), P<0.002 
(**), P<0.033 (*), P>0.12 (ns). 

Bulk sequencing 

PDL and gingival epithelial cells were seeded at the density 
of 50000 in triplicate and treated with freshly made curcumin and 
tetrahydrocurcumin for 24hr to assess the differentially expressed 
genes. RNA was isolated with Trizol and Qaigen Mini kit and 
after assessment of quality and quantity was sent for bulk RNA 
sequencing. We used the Partek RNA sequencing pipeline. All 
algorithms to analyse the data eres run with default settings, unless 
otherwise indicated. The quality of the sequencing reads was 
examined using Fast QC (v0.11.4) (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Raw sequencing reads (100-nt, 
paired-end) were trimmed using Trimgalore (v1.001.001). (https://
www.bioinformatics.babraham.ac.uk/projects/trim_galore/). 
Traces of ribosomal RNA and mitochondrial RNA were removed 
using the Bowtie2 (v2.2.5) 32. Reads were aligned to the human 
reference genome GRCh38 using STAR (v2.7.3a) aligner with 
multi-sample setting 33. Mapping and alignment quality were 
examined using FastQC. Duplicate reads were removed using 
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the Mark Duplicates function of the Picard tools (v2.17.11 
(http://broadinstitute.github.io/picard/). Reads were annotated 
using the Partek E/M with Ensembl Transcripts release 104. 
Samples were then visualized and explored using unsupervised 
methods. Samples were clustered based on principle Component 
Analysis (PCA), UMAP, tSNE and Hierarchical clustering. 
Differentially Expressed Genes (DEGs) between controls vs. 
different components using DESeq 2 (v3.5)34. DEGs with FDR 
value<=0.05, Fold change=>1.5 were filtered out for further 
analysis. The analysis pipeline can be seen in the chart below. 
For gene ontologies Enrichr biological function and bioplanet 
pathways were used. For biological function, we used -log10 p 
value for the selected GO terms and graphed those with -log10 
pvalue.1.5. For functional enrichment analysis G profiler was used 
with significance threshold set at Bonferroni correction and the 
term size set at 50. 

Data will be deposited in the portal specified by the journal.

Results

Effect of curcumin and tetrahydrocurcumin on the viability of 
human PDL cells

To evaluate the impact of curcumin and tetrahydrocurcumin 
on PDL cells, we first investigated the effect of these compounds 
on viability of PDL cells. MTS viability assays were used 
after treatment of PDL cells with a range of curcumin and 
tetrahydrocurcumin concentrations (10 µM, 5 µM, 1 µM and 
0.5 µM) for 24hours. Dimethylsulfoxide (DMSO) was used 
as vehicle-only control in all the experiments. At 10µM, 5µM 
and 1µM, treatment with tetrahydrocurcumin resulted in lower 
viability of PDL cells than the same concentrations of curcumin. 
Treatment with 0.5µM of both compounds resulted in more than 
90% viability of PDL cells. As treatment with 1µM concentration 
with curcumin and tetrahydrocurcumin resulted in more than 

75% viability of PDL cells, this was selected as the optimum 
concentration for further downstream analysis (Figure 1).

Figure 1: Viability of PDL cells after treatment with different 
concentrations of curcumin and tetrahydrocurcumin. MTS assay 
of PDL cells shows a reduction in cell viability with 10 µM 
Curcumin and an increase in cell viability with at 5 µM. Treatment 
with 1 µM and 0.5 µM results in the highest % viability. Treatment 
with 10 µM and 5-µM tetrahydrocurcumin results in the lowest 
level of viability in PDL cells. Treatment with 1 µM and 0.5 µM 
tetrahydrocurcumin results in increased cell viability.
Curcumin and tetrahydrocurcumin promote matrix 
organization and exhibit anti-inflammatory properties in PDL 
cells

After determining the suitable concentration of curcumin and 
tetrahydrocurcumin for the treatment of PDL cells, 1 µM of these 
compounds were used to investigate the Differentially Expressed 
Genes (DEG). Media and DMSO treatments were used as controls 
(supplementary). At FDR value<=0.05, Fold change=>1.5, 
treatment with curcumin as well as tetrahydrocurcumin resulted in 
more than 100 DEGs.

Curcumin showed a bigger impact on PDL cells with a 
higher number of upregulated genes. We used gene ontologies 
to investigate the biological functions and pathways that were 
associated with upregulated genes in PDL after treatment with 
curcumin and tetrahydrocurcumin. We found that some of the 
biological functions upregulated after curcumin treatment of 
PDL cells were regulation of extracellular matrix, regulation 
of apoptosis, membrane trafficking and interferon signalling. 
Biological functions associated with upregulated genes after 
treatment of PDL with tetrahydrocurcumin were regulation of 
extracellular matrix, regulation and ECM receptor interaction, 
angiogenesis, and prostaglandin biosynthesis. 

There were 22 shared upregulated genes between treatment 
of PDL cells with curcumin and tetrahydrocurcumin. These 
shared genes were enriched in development, morphogenesis of 
anatomical structure, collagen fibril organization, cell adhesion 
and vasculature development. Gene ontologies for upregulated 
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genes are shown in Figure 2.

Figure 2: Differential gene expressions following treatment of PDL cells with curcumin and tetrahydrocurcumin. A) Volcano plots 
of differentially expressed genes after treatment of PDL cells with curcumin. B) Volcano plots of differentially expressed genes after 
treatment with tetrahydrocurcumin. C) Gene ontology of selected biological function in curcumin treatment at FDR value<= 0.05, Fold 
change=>1.5. D) Gene ontology of selected biological function in Tetrahydrocurcumin treatment at FDR value<=0.05, Fold change=>1.5. 
E) Venn diagram of number of unique and shared upregulated genes upon treatment of PDL cells with curcumin and tetrahydrocurcumin. 
F) GO enrichment analysis by g: Profiler of the shared upregulated genes after treatment with curcumin and Tetrahydrocurcumin. G) 
Graphical illustration guide.

Curcumin and Tetrahydrocurcumin promote Wnt signalling pathway in PDL cells 

The Wnt signalling pathway is crucial in development and regeneration of many tissues in the oral cavity. Axin2 is a negative 
regulator and a down-stream target of this pathway and its expression is commonly used as a read-out of the level of Wnt signalling 
pathway activation [35,36]. Therefore, we asked if treatment with curcumin and tetrahydrocurcumin would affect the Wnt signalling 
pathway in PDL cells. Treatment with 1 µM curcumin as well as tetrahydrocurcumin resulted in upregulation of Axin2 in PDL cells. We 
used DMSO as a negative control and For Wnt signaling pathway, inhibitor 6-Bromoindirubin-3-Oxim (BIO) as a positive control [37].
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Figure 3: Effect of curcumin derived compounds on Wnt signalling pathway in PDL cells. PDL cells were treated with DMSO, 50 nM 
Bio and 1µM concentration of curcumin and tetrahydrocurcumin were used for the treatment of PDL cells. Increased Axin2 expression 
was detected after treatment with both compounds (P value<0.0001)

Curcumin and tetrahydrocurcumin promote cell migration and stem cell differentiation in gingival epithelial cells

Gingival Epithelial Cells (hGEP) serve as the barrier against pathogens and foreign bodies in periodontal tissue. We thus 
investigated the effect of curcumin compounds on these cells. To ensure that 1µM concentration used for PDL cells was not toxic for 
these cells, viability of hGEP was confirmed after treatment with selected concentrations of curcumin and tetrahydrocurcumin.

Similar to PDL cells, treatment of gingival epithelial cells with 1µM curcumin resulted in higher level of Axin2 induction in 
comparison to tetrahydrocurcumin. However, the impact of these compounds on differentially expressed genes was substantially 
different compared to PDL cells. 

At FDR value<=0.05, Fold change=>1.5, treatment with curcumin and tetrahydrocurcumin resulted in only a few differentially 
expressed genes in gingival epithelial cells. There were 3 shared upregulated genes between treatment of hGEP cells with curcumin and 
tetrahydrocurcumin. These shared genes were enriched in positive regulation of stem cell differentiation and regulation of morphogenesis. 
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Figure 4: Impact of curcumin and tetrahydrocurcumin on gingival epithelial cells. A) MTS assay of hGEP cells after treatment with 5 
µM and 1 µM of curcumin and tetrahydrocurcumin. B) Treatment of HGEPs with 1 µM of curcumin and tetrahydrocurcumin results in 
upregulation of Axin2. C) Enrichr GO Biological functions associated with upregulated genes after treatment of HGEP with curcumin. 
D). GO enrichment analysis by g: profiler of upregulated genes in curcumin treatment. E) Enrichr GO Biological functions associated 
with upregulated genes after treatment of HGEP cells with tetrahydrocurcumin. F) GO enrichment analysis by g: profiler of upregulated 
genes with tetrahydrocurcumin treatment. G) Venn diagram of unique and shared upregulated genes upon treatment of HGEP cells 
with Curcumin and tetrahydrocurcumin. H) GO enrichment analysis by g: profiler of the shared upregulated genes after treatment with 
curcumin and tetrahydrocurcumin. I) Graphical illustration guide. FDR value<= 0.05, Fold change=>1.5.
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Shared upregulated genes in PDL and Gingival epithelial cells after treatment with curcumin and tetrahydrocurcumin

Since treatment with curcumin compounds resulted in differentially expressed genes in both PDL and gingival epithelial cells, 
we looked at the shared and unique upregulated genes between these cells with each compound treatment. Upregulated genes after 
treatment with curcumin and Tetrahydrocurcumin in both cell types were selected and reflected in Venn diagrams. This was done at 
FDR value<=0.05, Fold change=>1.5 and showed that both compounds result in higher numbers of upregulated genes in PDL. Only two 
upregulated genes, UCHL1 and TRIM16L, were shared between PDL and hGEP with curcumin treatment.

Figure 5: Shared and unique upregulated genes in PDL and Gingival cells. A) Venn diagram showing shared and unique upregulated 
genes after treatment of PDL and HGEP cells with curcumin. UCHL1 and TRIM16L are upregulate in both cell types. B) Venn diagram 
showing shared and unique upregulated genes after treatment of PDL and HGEP cells with tetrahydrocurcumin. Treatment with 
Tetrahydrocurcumin did not result in any shared upregulated gene.

Discussion

In this study we investigated the regenerative potential of 
curcumin and tetrahydrocurcumin on gingival epithelial and 
periodontal ligament cells. Assessment of cell toxicity showed that 
1µM of both compounds was safe to be used with these cell types. We 
show that the Wnt signalling pathway which is associated with an 
early response to damage in many tissues, is promoted in these two 
cell types upon treatment with curcumin and tetrahydrocurcumin 
[35-40]. At 1 µM, curcumin shows promotion of Axin2 expression 
in both PDL and hGEP cells, although this level of induction was 
not very significant, higher concentrations could be further tested 
to determine the optimum dosage for induction of Wnt pathway in 
hGEP and PDL cells. 

Our RNA sequencing results demonstrate that curcumin and 
tetrahydrocurcumin can promote cell matrix organization. TGF-
beta regulation of extracellular matrix was the most prominent 
biological function affected in gingival epithelial and PDL cells 
in these treatments. In PDL cells, treatment with curcumin 
upregulated regulation of apoptosis, RAGE and FRA pathways, 
Gap junction, TP53 network and interferon signalling. FRA 
and RAGE pathways are associated with immune response and 
inflammation [41,42]. Their upregulation suggests a pronounced 
anti-inflammatory role of curcumin in PDL. Treatment with 
Tetrahydrocurcumin however, results in upregulation of Syndecan 
1 pathway, collagen biosynthesis, prostaglandin biosynthesis and 

angiogenesis in PDL. Syndecan pathway is known to regulate 
signalling of growth factors and morphogens and affects cell 
adhesion [43]. Syndecan1 also has a significant role in cell-cell 
and cell-matrix interactions and has been shown to promote 
axon regeneration [44,45]. This suggests a pronounced matrix 
remodelling role for Tetrahydrocurcumin in PDL cells, a process 
that is required in wound healing and regeneration. Interestingly, 
some upregulated genes were shared in treatment of PDL cells 
with curcumin and Tetrahydrocurcumin. These genes are enriched 
in collagen fibril organization, response to stimulus, development 
of anatomical structure and vasculature. This suggests these 
natural compounds can exert anti-inflammatory and pro-healing 
properties in PDL cells. 

Gingival epithelial cells exhibit a different transcriptional 
landscape and are subsequently differently impacted by treatments 
with curcumin and Tetrahydrocurcumin. Cell differentiation 
and cell-cell adhesion were the main biological functions 
associated with treatment of these natural compounds. More 
specifically, treatment with curcumin resulted in upregulation 
of genes associated with cell migration, stem cell differentiation 
and vascular development in gingival epithelial cells whereas 
treatment with Tetrahydrocurcumin, upregulated genes enriched 
in cell proliferation, response to heparin and interleukin signalling 
pathways. Heparins modulate inflammation and interleukin 
bioactivity [46-48]. This in addition to upregulation of cell 
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migration and stem cell differentiation suggests a regenerative 
potential of Tetrahydrocurcumin on gingival epithelial cells. 
Although in our study curcumin and Tetrahydrocurcumin 
appeared more potent on the PDL cells with higher numbers of 
upregulated genes, our data suggests that both compounds have 
anti-inflammatory properties and can promote healing and tissue 
regeneration in these periodontal cells. This can be through 
regulation of extracellular matrix and angiogenesis in PDL cells 
and via epithelial morphogenesis and stem cell differentiation in 
gingival epithelial cells.

Wound healing, anti-inflammatory and antioxidant 
properties have been reported in other tissues. Our current study 
highlights the regenerative potential of this natural compound in 
treatment of periodontal diseases. Curcumin nanoemulsions are 
effective against oral squamous cell carcinoma through inhibition 
of cell proliferation [49]. Regenerative potential of curcumin has 
been shown in peripheral nerve regeneration through induction 
of neural stem cell proliferation [50,51]. Curcumin can also 
induce regeneration of Beta cells in diabetic mice and contribute 
to accelerated muscle recovery [52,53]. In dental follicle cells, 
curcumin can regulate proliferation, senescence, and osteogenic 
differentiation and subsequently act as anti-senescence therapeutic 
[54]. Some of the anti-inflammatory properties of curcumin are 
through induction of apoptosis in inflammatory cells and shortening 
of the inflammatory phase to promote healing. Curcumin has also 
been shown to promote cutaneous would healing [55] and has anti-
inflammatory roles in human dental pulp stem cells [56]. Other 
reported curcumin properties are collagen synthesis, fibroblasts 
migration, and differentiation [57-62]. These properties were also 
seen on treatment of PDL cells with curcumin in our study. Similar 
to previous studies, we demonstrate that Tetrahydrocurcumin 
can target different signalling pathways and cellular responses. 
Anti-inflammatory and neuroprotective properties of 
Tetrahydrocurcumin have been reported in other cell types. 
Tetrahydrocurcumin can inhibit cell cycle arrest and apoptosis 
through Ras/ERK signalling pathway and prevent sepsis and 
oxidate stress Tetrahydrocurcumin exerts neuroprotective effects 
in hippocampal cells and angiogenesis and vascular protection in 
brain endothelial cells [63-66]. Additionally, independent studies 
have shown that Tetrahydrocurcumin exerts anti-inflammatory, 
antiangiogenic, and neuroprotective properties in ocular disease 
and can improve insulin sensitivity and high blood pressure 
in kidney injury [67-69]. Anti-inflammatory, antiangiogenic 
properties associated with treatment of Tetrahydrocurcumin in our 

study is in line with the properties identified in previous studies. 

Amongst our studied compounds, curcumin was more 
potent on both PDL and gingival epithelial cells. Additionally, 
treatment with curcumin results in upregulation of TRIM 16 
and UCHL1 in both PDL and gingival epithelial cells. UCHL1 
is a mitochondrial 10-formyltetrahydrofolate dehydrogenase that 
contributes to recovery after axonal injury and can regulate the 
immunosuppressive capacity and survival of mesenchymal stem 
cells in inflammatory diseases [70,71]. TRIM16 is a protein coding 
gene that acts as a tumour suppressor, affecting differentiation and 
cell migration. Interestingly, TRIM16 has been shown to promote 
differentiation of PDL stem cells and protect PDL from oxidative 
stress-induced damage [72,73]. Upregulation of TRIM16 and 
UCHL1 in both PDL and gingival epithelial cells demonstrates that 
curcumin has the potential to promote wound healing and tissue 
remodelling in both PDL and gingival epithelial cells. This together 
with upregulation of Wnt signalling, which is associated with 
tissue regeneration, emphasises the regenerative potential of this 
compound on periodontal cells. Clinical trials have demonstrated 
that curcumin can reduce gingival inflammation when used with 
scaling and oral gel containing Curcuma longa extract is efficient 
in treating initial infective inflammatory periodontal disease [74]. 
Animal studies have shown that natural curcumin can inhibit 
the inflammatory process and reduction in alveolar bone loss in 
experimentally induced periodontitis [75-78]. However, the need 
of human studies to better evaluate properties of curcumin in 
treatment of periodontitis has been highlighted [79]. 

Our current study provides evidence of cellular benefits of 
curcumin on human PDL and gingival epithelial cells. Investigation 
of differentially expressed genes in PDL and gingival epithelial 
cells after treatment with curcumin and Tetrahydrocurcumin 
provides the basis for a screening method to select potential 
candidates for natural therapeutic approaches in periodontal tissue. 
Additionally, this method allows detection of any adverse impact 
that these compounds may inflict on the cells. The results of this 
study suggest that curcumin and Tetrahydrocurcumin exhibit anti-
inflammatory and regenerative potential on PDL and gingival 
epithelial cells. In particularly, curcumin can be a low-cost, well-
tolerated and effective natural candidate for therapeutic approaches 
in periodontal tissue as it promotes organization of extracellular 
matrix in PDL cells and cell migration, differentiation, and 
angiogenesis in gingival epithelial cells. Further in vivo testing 
of this compound is required to confirm the optimum biological 
activity and to harness its full potential in clinical application.
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Supplementary figure

Supplementary Figure 1: Bulk Sequencing of PDL and hGEP cells after treatment with curcumin and Tetrahydrocurcumin. Pre-
alignment quality control of different compounds used for PDL and hGEP treatment (A, F), Total reads per sample (B, G), Ribosomal 
and mitochondrial RNA contamination with <3% ribosomal and mitochondrial RNA suggesting good quality samples (C, H). Alignment 
quality control where >80% of the reads (D, I) Number of genes that were detected per samples (E, I)
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