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Abstract
Probiotics are gaining much attention due to their beneficial functions in restoring microbial dysregulation which is the 

newly emerging etiology of the metabolic diseases such as hyperglycemia. The anti-hyperglycemic effects of probiotics were 
mostly demonstrated using rodents or human subjects, instead of in vitro cell lines due to the susceptibility to probiotics-derived 
acid compounds, leading to the ineligibility of in vitro cell lines for the massive screening of varied probiotic libraries. To 
address this issue, the current study was aimed to take advantage of the Drosophila to conduct the massive screening for the 
anti-hyperglycemic effects of 168 probiotic libraries belonging to 14 different species derived from human oral cavity. Each of 
168 strains were individually treated to High-Sucrose Diet (HSD)-fed Drosophila and the lowest hemolymph glucose levels 
were measured in HSD-fed Drosophila supplemented with Lactiplantibacillus plantarum DM043, DM049, and DM083 among 
168 strains. The Lpb. plantarum DM083 could survive at an acidic environment greater than DM043 and DM049. Heat-killed 
Lpb. plantarum DM083 failed to inhibit hyperglycemia, reflecting the importance of being alive. Importantly, Lpb. plantarum 
DM083-mediated molecular pathways related to insulin and glucose metabolisms were conserved from Drosophila to mammals, 
implying that Drosophila-tested Lpb. plantarum DM083 could be extrapolated to the rodents or humans. In conclusion, HSD-
fed Drosophila was for the first time applied to evaluate the anti-hyperglycemic effects of 168 probiotic libraries, leading to the 
discovery of Lpb. plantarum DM083 as the best candidate which will be applicable to the rodents and humans.
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Introduction
The dietary imbalance, especially High-Sucrose Diet 

(HSD) intake, induces chronic metabolic disorders such as 
hyperlipidemia and hyperglycemia [1]. Based on the hypothesis 
that the development of the hyperglycemia is associated with 
the dysregulation in intestinal microbial ecology, many scholars 

have tried to employ potential therapeutic probiotics to restore 
gut dysbiosis preclinically [2-14] or clinically [15-19], leading 
to the alleviation of the hyperglycemia. The probiotic strains 
reported to exert the anti-hyperglycemic effects belonged to 
various kinds of bacterial species such as Lactiplantibacillus 
plantarum, Lacticaseibacillus casei, Lacticaseibacillus paracasei, 
Lacticaseibacillus rhamnosus, Limosilactobacillus reuteri, and 
Limosilactobacillus fermentum. However, most of those works 
lacked the description of the initial screening test for searching the 
target strain from varied probiotic libraries.
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Due to the time and cost limitations, the rodents or human 
subjects are not available for a massive screening of probiotic 
libraries. Although being time and cost-efficient, in vitro cell lines 
are inappropriate for the probiotics due to the susceptibility to the 
probiotics-derived acidic compounds. Several studies made an 
effort to address this issue as applying the heat-killed probiotics 
to the in vitro cell lines [3,20]. However, the subsequent rodent 
test used the live probiotics [21], which could distort the initial 
screening results.

The fruit fly, Drosophila melanogaster, can be alternatively 
used for the massive screening of probiotic libraries due to the acid 
resistance, short life cycle, and high fecundity [22]. Importantly, 
HSD feeding to Drosophila effectively induced hyperglycemia 
in larva [23,24] or in adult flies [25]. In addition, the molecular 
mechanisms underlying hyperglycemia were shared between fly 
and rodent [26]. The HSD-fed Drosophila showed the decrease in 
mRNA expression of Insulin-Like Peptide 2 (Ilp2), the Drosophila 
ortholog of the insulin, in Insulin-Producing Cells (IPCs) located 
in the brain. Similarly, the HSD-fed mice exhibited the reduction in 
insulin secretion from pancreatic islets [26]. The insulin deficiency 
induced the shortage of glucose uptake into the peripheral cells, 
which was accompanied by cellular fasting responses represented 
by the elevation of the mRNA expressions of gluconeogenic genes 
such as phosphoenolpyruvate carboxykinase (Pepck) and glucose 
6-phosphatase (G6Pase) [23-25,27]. In particular, Drosophila 
contains trehalose 6-phosphatase (Tps1) in addition to G6Pase for 
gluconeogenesis [28].

Human oral cavity is colonized with a variety of intrinsic 
probiotics. The aim of this study is to take advantage of HSD-
fed Drosophila to search out a new anti-hyperglycemic probiotic 
strain among 168 probiotic libraries derived from human Tongue 
Coating (TC) biospecimens donated from 120 healthy volunteers 
(100 adults and 20 younger children).

Materials and Methods

Isolation and identification of TC-originating probiotic strains

All procedures were conducted in accordance with relevant 
guidelines and regulations approved by the ethics committee of 
the Institutional Review Board of the Apple Tree Dental Hospital 
(approval number: ATDH-2021-0001) and the Korea National 
Institute for Bioethics Policy (approval number: P01-202111-31-
002). The TC samples, collected from 100 adults and 20 younger 
children, were distributed by the Biobank of Apple Tree Dental 
Hospital, a part of the Korea Biobank Network (KBN). The TC 
samples were resuspended in 3 mL of phosphate-buffered saline 
(PBS) and stored at -80 °C until used. To isolate TC-derived 
probiotic strains, 1 mL of each TC sample was plated onto ten 
plates (100 mL per plate) of LactoBacillus Selective (LBS) agar 

(Kisan Bio Inc., Korea) and anaerobically incubated for 48 h at 
37 °C. The colonized isolates were identified by 16S rRNA partial 
sequencing (Macrogen Inc., Korea).

Fly culture and food

The Drosophila melanogaster white-eyed w1118 line was kept 
at a density of fifteen males and five females in each vial with 12 
hour on/off light cycle at 25 °C. Three-day old flies fed ad libitum 
were used in all experiments. Flies were raised on food containing 
2% (w/V) yeast and three different amounts of sucrose (w/V) 
(10%, 20%, and 40%), indicated with S10Y2, S20Y2, and S40Y2, 
respectively. The starvation diet contains only 1% sucrose.

Probiotics supplementation and hemolymph glucose 
measurements

Three-day old flies were transferred to vials containing 
the starvation diet and maintained for 12 h. Fasted flies were 
refed the experimental foods supplemented with probiotics at a 
concentration of 1010 Colony-Forming Units (CFU) per mL. After 
three days, males were anesthetized with posterior abdomen 
cropped, and vortexed in phosphate-buffered saline (PBS), 
allowing hemolymph to be eluted. After centrifuging at 9,000 g 
for 5 minutes at 4 °C, supernatants were used for determination of 
glucose levels by using the glucose detection kit (Sigma Aldrich 
Inc., USA). At least three biological replicates were measured on 
a microplate reader (SpectraMax iD3, Molecular Devices Inc., 
USA).

Acid-resistance test of probiotics

Resistance to low pH was evaluated as described by Ye et 
al. [28] with minor modifications. Briefly, probiotic strains were 
anaerobically cultured in de Man Rogosa Sharp (MRS, Sigma-
Aldrich Inc., USA) liquid for 48 h at 37 °C. The cultures were 
inoculated into PBS adjusted to pH 2.5 or pH 6.5. After 6 h, the 
cultures were ten-fold diluted four times, thereafter each 100 μL of 
1st ~ 4th dilutions were cultured on MRS agar. The x number of CFU 
was counted in y times diluted plate which presented the number 
of CFU between 30 and 200. The survival rate was calculated as 
the ratio of CFU of pH 2.5 to that of pH 6.5. The experiments were 
performed in triplicate and mean values were calculated.

Quantitative RT-PCR

Total mRNA was extracted using the RNeasy mini kit (Qia-
gen Inc., USA). The cDNA was generated with 0.5 μg total mRNA 
using the PrimeScriptTM RT-PCR kit (Takara Bio Inc., Japan) ac-
cording to the manufacturer’s instructions. The generated cDNA 
was used for real-time RT-PCR using Exicycler™ 96 Real-Time 
PCR systems (Bioneer Inc., Korea), SYBR Green PCR master 
mix (Thermo Fisher Scientific, USA), and primers for Ilp2 (5-CT-
GAGTATGGTGTGCGAGGA-3 and 5-CAGCCAGGGAATT-
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GAGTACAC-3), CCHa2 (5-TCGTTATCTGCACCGTGGTC-3 
and 5-CCCTTTTTCGCTTGGCTCT-3), Pepck (5-AGAAGAAG-
TACATCACTGCCGCCT-3 and 5-TCCCTGCGAGTCAAACT-
TCATCCA-3), Tps1 (5-TCCGATGAGATCCTACAGGGTATG-3 
and 5-CGCCATGTTCCACCAGCAGATTG-3), and Rp49 (5-CG-
GATCGATATGCTAAGCTGT-3 and 5-GCGCTTGTTCGATC-
CGTA-3). The reaction conditions consist of the first denaturation 
step for 3 min at 95 °C followed by 40 cycles of a denaturation step 
for 10 s at 95 °C and an annealing/extension step for 20 s at 60 °C.

Antibiotic susceptibility test

Minimal Inhibitory Concentration (MIC) values for 
probiotics were determined in LSM medium (90% of Iso-Sensitest 
broth (KisanBio Inc., Korea) and 10% MRS broth) according to 
the ISO 10932:2010 broth microdilution procedure [30]. LSM 
medium was supplemented with serial dilutions of antibiotic 
compounds including GEN (0.5–256 mg/L), KAN (2–1,024 
mg/L), STR (0.5–256 mg/L), TET (2–1,024 mg/L), ERY (0.016–8 
mg/L), CLIN (0.032–16 mg/L), CHL (0.125–64 mg/L), and AMP 
(0.032–16 mg/L). Overnight-cultures of probiotics were inoculated 
into the LSM medium containing antibiotics and anaerobically 
incubated at 37 °C for 2 days. MIC was determined as the lowest 
concentration of antimicrobial compounds at which the growth of 
the probiotics was inhibited. The growth was measured at 600 nm 
absorbance using a SpectraMax iD3 microplate reader (Molecular 
Devices, USA) and MICs were compared to the cut-off values 
recommended by the European Food Safety Authority (EFSA) 
[31].

Hemolysis test

Hemolysis was observed by anaerobic incubation of the 
probiotics in Tryptic Soy Agar (TSA) (Fisher Scientific  Inc., 

USA) supplemented with 5% sheep blood (KisanBio Inc., Korea) 
at 37 °C for 2 days [32]. The loss of blood color around colonies 
indicates hemolysis.

Statistical analysis

All data were expressed as mean ± Standard Deviation (SD). 
Statistical analysis was performed through the analysis of variance 
(ANOVA) followed by the Tuckey’s multiple comparison. 
Statistical significance was attributed to p values < 0.05 (*), 0.01 
(**), and 0.001 (***). The software GraphPad Prism v5 (GraphPad 
Inc., USA) was used for the analysis.

Results

Isolation of probiotic strains from the human TC biospecimens

The human TC specimens distributed by the Korea Oral 
Biobank Network (KOBN) were originated from 100 adults (aged 
from 19 to 80) and 20 younger children (aged under 9). As the 
results of cultivating each TC specimen on LBS agar plates, a 
total of 168 colonies were isolated, which belonged to 9 different 
genera and 14 different species according to the reclassified 
nomenclature (Table 1) [33]. Lacticaseibacillus rhamnosus (n = 
52) showed the highest incidence, followed by Limosilactobacillus 
fermentum (n = 32), Lactiplantibacillus plantarum (n = 15), 
Lactobacillus gasseri (n = 14), Latilactobacillus curvatus (n = 
14), Limosilactobacillus vaginalis (n = 13), Latilactobacillus sakei 
(n = 8), Lacticaseibacillus paracasei (n = 7), Ligilactobacillus 
salivarius (n = 6), Limosilactobacillus mucosae (n = 2), 
Lentilactobacillus sunkii (n = 2), Levilactobacillus brevis (n = 
1), Levilactobacillus graminis (n = 1), and Liquorilactobacillus 
nagelii (n = 1). Among them, Lcb. rhamnosus, Llb. fermentum, 
Lpb. plantarum, Llb. sakei, and Lcb. paracasei are species found 
in both adults and younger children.

No. Species name Adults Younger children Sum
1 Latilactobacillus curvatus 14 14
2 Latilactobacillus graminis 1 1
3 Latilactobacillus sakei 1 7 8
4 Lacticaseibacillus rhamnosus 49 3 52
5 Lacticaseibacillus paracasei 5 2 7
6 Lactiplantibacillus plantarum 12 3 15
7 Limosilactobacillus fermentum 23 9 32
8 Limosilactobacillus vaginalis 13 13
9 Limosilactobacillus mucosae 2 2

10 Lactobacillus gasseri 14 14
11 Ligilactobacillus salivarius 6 6
12 Lentilactobacillus sunkii 2 2
13 Levilactobacillus brevis 1 1
14 Liquorilactobacillus nagelii 1 1
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Sum 129 39 168

Table 1: The list of probiotic strains isolated from adults and younger children.

Induction of hyperglycemia in Drosophila

To find out the sucrose concentration to induce hyperglycemia in Drosophila, adult flies were fed three kinds of diets differing in 
sucrose concentrations (10%, 20%, and 40%, respectively). As the results, the hemolymph glucose levels increased in proportion to the 
sucrose concentrations, leading to peak glucose level at 40% sucrose (Figure 1).

Figure 1: The graphs showing hemolymph glucose levels measured in Drosophila adult flies fed 2% yeast and three different 
concentrations of sucrose as indicated. Three times (five males per time) were replicated and subjected to ANOVA followed by the 
Tuckey’s multiple comparison. Statistical significance was attributed to p values < 0.01 (**) and 0.001 (***).

The massive screening of probiotic libraries using Drosophila

The massive screening was conducted to examine the anti-hyperglycemic effects of 168 libraries using Drosophila adult flies 
fed 40% sucrose and 2% yeast diet (triplicate of five males for each probiotic strain). As the results, three strains belonging to Lpb. 
plantarum species (DM043, DM049, and DM083) were determined to be the most effective in suppressing hyperglycemia as indicated 
with gray bars in Figure 2.
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Figure 2: The graphs showing hemolymph glucose levels of Drosophila fed 40% sucrose and 2% yeast (S40Y2, black bars) and S40Y2-
fed Drosophila supplemented with 168 probiotic libraries from DM001 to DM177 with exemption of nine. Gray bars indicated the 
probiotic strains exerting the strongest effects on anti-hyperglycemia.
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Acid-tolerance test

The acid-tolerance test determined that Lpb. plantarum 
DM083 was significantly more acid-tolerant than DM043 or 
DM049 (Figure 3A), implying that the Lpb. plantarum DM083 
is more likely to remain alive after passing through the stomach 
compared to DM043 or DM049. The significance of being alive in 
relation to the anti-hyperglycemic effect of Lpb. plantarum DM083 
was reflected by the result that the heat-killed Lpb. plantarum 
DM083 failed to restore hyperglycemia (Figure 3B).
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Figure 3: (A) The graphs illustrating survival rates (%) of Lpb. 
plantarum DM043, DM049, and DM083 which were calculated 
as the ratio of the number of CFU incubated in pH2.5 to that 
incubated in pH6.5. (B) The graphs demonstrating hemolymph 
glucose levels of S40Y2-fed Drosophila supplemented with live or 
heat-killed Lpb. plantarum DM083. Three times were replicated 
and subjected to ANOVA followed by the Tuckey’s multiple 
comparison. Statistical significance was attributed to p values < 
0.01 (**) and 0.001 (***).

The mechanisms underlying the anti-hyperglycemic effect of 
probiotics

To investigate the molecular mechanisms under which Lpb. 
plantarum DM083 can alleviate the hyperglycemia, mRNA levels 
of genes related to the insulin and glucose metabolisms were 
measured in Drosophila adult flies feeding 10% sucrose (normal 
diet, ND), 40% sucrose (high-sucrose diet, HSD), and HSD + 
1010 CFU/mL Lpb. plantarum DM083 (HSD+DM083). The 
mRNA levels of CCHamide-2 (CCHa2), the insulin secretagogue, 
measured in the intestine tissues were lowered in HSD compared 
to ND, but significantly upregulated in HSD+DM083 (Figure 
4A). The mRNA levels of Ilp2, the Drosophila ortholog of 
insulin, measured in the brain tissues were also reduced in HSD 
compared to ND, but significantly increased in HSD+DM083 
(Figure 4B). The mRNA levels of both Pepck and Trehalose-
6-phosphatase (Tps1), the gluconeogenic genes, measured in 
abdomen tissues were higher in HSD compared to ND, but 
significantly downregulated in HSD+DM083 (Figure 4C and D). 
Taken together, Lpb. plantarum DM083 intervention successfully 
restored HSD-induced dysregulations in insulin and glucose 
metabolisms.
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Figure 4: The graphs showing mRNA levels of CCHa2 (A), Ilp2 (B), Pepck (C), and Tps1 (D) in Drosophila fed ND, HSD, and 
HSD+DM083. Three times were replicated and subjected to ANOVA followed by the Tuckey’s multiple comparison. Statistical 
significance was attributed to p values < 0.05 (*) and 0.001 (***).
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Safety evaluations of Lpb. plantarum DM083

The antibiotic susceptibility of the Lpb. plantarum DM083 was evaluated by MIC values according to EFSA criteria for Lpb. 
plantarum, resulting that Lpb. plantarum DM083 was susceptible to all the tested antibiotics as indicated in Table 2. Additionally, no 
hemolytic activity of the Lpb. plantarum DM083 was observed when cultured on TSA supplemented with sheep blood for 2 days at 37 
°C (data not shown).

Class Aminoglycoside Tetracycline Macrolide Lincomycin Amphenicol β-Lactam

Antibiotic (mg/L) GEN KAN TET ERY CLIN CHL AMP

Cut-off value* 16 64 32 1 2 8 1

DM083 2 16 32 0.5 0.5 8 0.5

*Based on EFSA criteria for Lpb. plantarum.

Table 2: Antibiotics susceptibility test of Lpb. plantarum DM083.

Discussion

Lpb. plantarum is a non-gas-producing lactic acid 
bacterium that is generally regarded as safe (GRAS) [34]. The 
representative strain for the Lpb. plantarum is WCFS1 isolated 
from saliva [35], and most of other strains belonging to the Lpb. 
plantarum were isolated in fermented foods [34] and infant 
faces [36]. Interestingly, plenty of research reports exhibited the 
anti-hyperglycemic effects exerted by various kinds of the Lpb. 
plantarum strains such as CCFM0236 [2], Ln4 [3], MTCC5690 
[4], NCDC17 [10], 299v [37], 13 [38], TN627 [39], DSM15313 
[40], OLL2712 [41], NCIMB8826 [42], MG4296 [43], SCS2 [44], 
SS18-5 [45], LRCC5310 [46], Y15 [47], Dad-13 [48], SHY130 
[49], and NC8 [50]. Especially, Lpb. plantarum HAC01 was 
intensively investigated to show the anti-hyperglycemic effects 
in the high-fat diet (HFD)/streptozotocin (STZ)-treated mice 
[12] and humans [18]. Those numerous references implies that 
Lpb. plantarum-belonged strains share the crucial factors being 
advantageous over other probiotic species in modulating the host 
glucose and insulin metabolisms although the concrete evidence 
has remained obscure. Importantly, the application of Drosophila 
adult flies to probiotic libraries including 14 species and 168 
strains also demonstrated that the anti-hyperglycemic effects of 
Lpb. plantarum-belonged strains (DM043, DM049, and DM083) 
are superior to other probiotics, contributing to the reinforcement 
of those references above.

The mechanisms underlying the probiotic effects can 
be attributed to the interaction between probiotics-derived 
metabolic compounds and gastrointestinal tract. Several Lpb. 
plantarum-derived compounds such as phenyllactic acid [51], 
butyrate [52], gamma-aminobutyric acid (GABA) [53], and 
exopolysaccharide [54] have been already specified to cause the 
anti-hyperglycemic effects. Those microbial products can interact 
with the gastrointestinal tract of which enteroendocrine cells play 

the pivotal roles to secrete various types of peptide hormones. For 
instance, the microbial GABA was reported to increase Glucagon-
Like Protein-1 (GLP-1) secretion in enteroendocrine cells [55]. 
GLP-1 is released from L-cells in mammalian small intestine 
and relayed to the pancreatic b-cells, contributing to enhance 
the insulin secretion and thus rescue diabetic hyperglycemia and 
hyperlipidemia [56]. 

It is plausible that the anti-hyperglycemic effect of 
the Lpb. plantarum DM083 also might be derived from its 
bioactive molecules. The Lpb. plantarum DM083 genome 
(GenBank CP099962.1) possesses the glutamate decarboxylase 
(NHN79_14330) [57] which catalyzes GABA production, 
implying that the Lpb. plantarum DM083 could contribute to 
the stimulation of GLP-1 release from enteroendocrine cells and 
thereafter insulin secretion from pancreas [58]. The current study 
demonstrated that Lpb. plantarum DM083 increased the intestinal 
mRNA levels of CCHa2 and the brain mRNA levels of Ilp2. On 
the behalf of GLP-1, in Drosophila, enteroendocrine cell-specific 
hormone CCHa2 is relayed to the IPCs located in the brain, 
contributing to the elevation of the mRNA level of the Ilp2, the 
Drosophila ortholog of the insulin [59,60]. It should be needed to 
examine if the Lpb. plantarum DM083 can produce GABA in the 
further study.

Conclusions

The significance of the current finding is that the massive 
screening of probiotic libraries can be highly available using 
the acid-resistant, time- and cost-efficient model of Drosophila 
of which molecular mechanisms underlying glucose and insulin 
metabolisms are conserved from flies to mammals. It is noteworthy 
to propose that the anti-hyperglycemic effect of the Lpb. plantarum 
DM083 demonstrated by HSD-fed Drosophila would be also 
remarkable in the diabetic rodents or humans.
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