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Abstract
Use of current anticancer therapies such as chemo-radiotherapy (CRT), biologics and immunotherapies are severely 

limited due to side-effects and systemic toxicity. Cancer metastasis, drug resistance, and recurrence of cancer are other important 
considerations to evolve targeted therapies. This highlights the urgent clinical need to explore natural compounds that are bioactive, 
biosafe and unquestionably efficient as immune-modulators for cancer prevention and anti-cancer therapy.  Natural compounds 
are extremely successful in clinics as they have unique structures and complexity. Gambogic acid (GA), a plant derived caged-
xanthone molecule extracted from Garcinia hanburyi tree as a dry resin that has emerged as a miracle molecule that exhibits 
multifarious biological activities against various cancers making it attractive for clinical applications. Since the molecular targets 
are still unclear, this review focuses on the therapeutic efficacy and its associated mechanistic interactions with its recognized 
targets involving anti-angiogenesis, anti-metastasis, synergistic effects and chemo-sensitization.
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Introduction
Cancer still remains the deadliest form of disease, an 

estimated 10 million deaths that occurred due to cancer worldwide 
[1]. According to Globocan report, more than 2.26 million new 
cases were diagnosed with women breast cancer, lung cancer 
(2.21 million new cases, deaths 1.80 million), colon and rectum 

cancer (new cases 1.93 million, deaths 9.35 million) worldwide 
in 2020 [2]. The rising prevalence and incidence of cancer are 
associated with molecular alterations. Cancer encumbrance 
can be decreased considerably by detection at early-stage of 
cancer coupled with suitable regimens. Last five decades have 
witnessed an avalanche of literature that provides significant 
evidence proving phytochemicals as potent anti-cancer drugs. The 
phytochemicals can be derived from natural products that include 
leaves, bark, stem, roots, flowers of plants, micro-organisms as 
well as marine organisms. The phytochemicals may be organic 
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compounds like polyphenols, phytochemicals and xanthones that 
exhibit distinct anti-cancer properties [3]. Gambogic acid (GA) is 
the caged xanthone secreted as dry resin from the plants of genus 
Garcinia which is native to East Asia, India, America, Australia 
and southern Africa. Owing to abundance and ease of isolation 
process of Garcinia hanburyi in India and East Asia, it becomes an 
attractive molecule to exploit. The gamboge resin containing GA 
has been used as traditional folk medicine as phytomedicine for a 
variety of ailments in Ayurveda in countries like India and China 
over several decades [4].

GA has shown a wide variety of biological activities 
including anticancer, anti- cardiovascular disease (CVD) anti-
inflammatory, anti-viral, anti-parasitic, anti-infectiousness, anti-
oxidant, and a promising molecule to treat osteoarthritis [5]. The 
biocompatibility of GA was indicated by measuring heart rate, 
blood pressure and few parameters of the brain (CNS) indicating 
low toxicity on the cardiovascular and respiratory system [6].

GA is a solid, hydrophobic molecule that shows a maximum 
absorption wavelength of 365 nm as well as the unique xanthone 
skeleton. The activity relationship-based studies of GA indicate 
that the double bond of 9, 10 carbon of α, β-unsaturated ketone 
moiety plays a significant role in its biological activity. The ease 
of modification at 6-hydroxy and 3o-carboxy group enhances its 
efficacy. The electrophilic α, β-unsaturated carbonyl group in 
the bioactive compounds could specifically binds to the thiols. 
Structure and activity-based relationship of GA could provide a 
better understanding for developing GA as a potential candidate to 
exploit in clinics. Various structural alterations have been reported 
to increase bioavailability, enhance stability and improve the 
selective toxicity against targeted cancer cells [7].

Emerging studies reported that GA acts as potent anti-cancer 
agents against various form of cancer- breast, lungs, gastric, 
colon, head and neck cancer, brain tumor and prostate cancer [8]. 
Furthermore, China food and drug administration (CFDA) has 
approved GA for phase II clinical trials against lung cancer and 
other malignancies. Bone marrow suppression was not observed 
after the treatment with GA unlike other chemotherapeutic agents 
[9]. GA was reported to increase the intracellular concentration 
at lower doses of chemotherapeutic drug that helped develop it 
for combinatorial therapy to exploit its synergistic activity to 

selectively target cancer cells. Reports on the chemo-sensitization 
of GA indicated modulation of various pathways including PI3K/
AKT, MAPK/ERK, and NF-kB [10]. Earlier reports suggest that 
GA exhibits its anti-inflammatory by suppressing NF-κB activity 
through modification of 179Cys of IKKβ moieties, resulting 
decreased expression of TNFα, COX-2, and iNOS. GA possibly 
exerts its inimitable anti-tumour activity via multiple cell death 
mechanisms such as apoptosis, autophagy and suppressing 
propagation and invasion of cancer cells. Despite its cited 
advantages, the clinical applications are severely limited due to the 
poor aqueous solubility (0.013mg/mL) requiring repeat injections. 
However, recent studies reported that the GA derivatives with 
higher aqueous solubility may show significant anti-tumor activity 
and could be crucial for clinical applications.

Herein, we summaries the recent advancement and 
mechanism of action of GA in facilitating the anti-cancer properties 
in various cancer cell lines types, animal models and human 
clinical trials through chemo sensitization and synergistic activity 
with other drugs to combat drug resistance in multiple cancers.

Herein, we review the challenges in combating cancer using 
innovative approaches based upon phytochemicals to permeate the 
hurdles associated with cancer incidence, metastasis and prognosis. 

Cytotoxic Activity of Gambogic acid

In this study, bibliographic investigations were conducted on 
anti-cancer properties of GA in various malignancies from their 
discovery to till date by analysing journals and peer-reviewed 
papers indexed on PubMed link, Scopus and Google scholar. Only 
relevant studies are used to illustrate the remarkable role of GA 
in biomedical field in the form of Pie -chart in figure 1. However, 
the scientific studies on GA began in 1966 and the mechanistic 
studies are on-going. Therefore, it has been widely studied during 
recent years as there were only four scientific reports on GA from 
1966 to 2004 but a sudden escalation was observed after 2004 
and many papers exploring the potency of GA as an anticancer, 
anti-inflammatory agent have been reported. These studies mainly 
include breast, liver and lung cancer. (Figure 1). The standards 
used for the selection of data and information in this review 
deliberate in vitro and in vivo cytotoxicity of Xanthone derived 
Gambogic acid. 
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Figure 1: Schematic illustration of remarkable role of GA in medical research. Pie chart depicting the studies associated with GA in 
multiple cancer treatment (breast, liver, lung, colorectal, ovarian, cervical, pancreatic, glioblstoma, melanoma, head and neck, prostrate, 
renal and in clinical trials. Data generated inclusive of GA in studies on pubmed search link using key words: “Gambogic Acid and 
respective cancer” Only this criterion has been followed for this search.

Figure 2: Overview depicting the modulation of signalling pathways by Gambogic Acid.
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Leveraging the potential of GA 

In cell cycle regulation

The phases of cell cycle are the key regulators of all cellular 
processes and cell growth that are also considered as the major 
anticancer mechanisms. Literature survey suggested the influence 
of GA on the different cell cycle phases in various types of 
cancers. GA reduces the level of phosphor-cdc2 (Thr 161) and 
cdc25B to promote G2/M arrest in MG63 osteosarcoma cells and 
also reduces the phosphor-GSgsK3-β (ser9) and the expression of 
cyclin D1 in U2OS cells [11]. Depolymerization of microtubules 
induced by treatment of GA was observed in MCF-7 cell line 
[12]. Decreased CDK7 kinase activity leading to inactivation of 
cdc2/p34 kinase in BGC-823 human gastric carcinoma cells were 
observed post treatment with GA [13]. Further, downregulation of 
SRC-3 expression leading to inhibition of AKT signaling pathway 
was observed that resulted in G0/G1 arrest in K562 myelogenous 
leukemic cells [14]. 

In elucidating cell death mechanisms

Apoptosis

Apoptosis or programmed cell death is a cascade of events 
through a number of intrinsic or extrinsic apoptotic proteins. 
p53 known as the “guardian of the genome” plays a crucial role 
in tumor suppression, but when mutated it leads to apoptosis, 
redox resetting, cell cycle arrest and senescence. Various 
studies suggested that GA upregulates p53 during translation 
by downregulating expression of the mdm2 gene in (non-small 
cell lung cancer H1299 cells [15]. Earlier reports suggested that 
GA inhibits Bcl-2 antiapoptotic proteins in cervical cancer [16]. 
Furthermore, GA could also promote p21waf1/cip1 levels to 
induce apoptosis in (MCF-7 cells) by inhibiting MDM2 either 
through p53 pathway or p53-independent pathway suggesting 
that MDM2 activation is not solely dependent on the mutated 
p53 stability in cancer [17]. GA reportedly has the ability to 
degrade the mutant p53 in MDA-MB-435 cells by interacting 
with Hsp70 and Hsp90 via the ubiquitin/proteasomal system. 
Hsp90 and Hsp70 modulate the mutated p53 to CHIP (chaperone-
associated ubiquitin ligase carboxy terminus of Hsp70-interacting 
protein) resulting in its proteasomal mode of degradation [18] GA 
facilitates mutant p53 to interact with hsp70 and restricts Hsp90/
mutantp53 complex formation resulting in apoptotic cell death 
[19]. GA induces cytotoxicity in melanoma cells by directly 
inhibiting the 20S ubiquitin-proteasome system [20]. GA has the 
potential to activate mitochondrial-dependent (intrinsic pathway) 
as well as mitochondria independent (extrinsic apoptotic pathway). 
Moreover, GA enhances production of reactive oxygen species 
(ROS) by collapsing the mitochondrial transmembrane potential 
(MMP), increasing downregulation of SIRT1 in multiple myeloma, 
and enhancing phosphorylation of c-Jun-N-terminal protein 

kinase (JNK) and p38 in hepatoma SMMC-7721 cells. Interaction 
of GA with thioredoxin reductase 1(TrxR1) possibly produces 
ROS accumulation in hepatocellular carcinoma [21]. Interaction 
between the transferring receptor and GA induces a specific signal 
for prompt apoptosis in cancer [22]. Suppression of IkBα and p65 
phosphorylation by GA could possibly inhibit the NF-kB pathway 
to revoke NF-kB-dependent reporter gene expression [23-25]. 
GA down regulates mitogen-activated protein kinases (MAPK) 
signaling pathway, and c-fos induces cell apoptosis by deletion of 
phosphate and tension homolog (PTEN) and p53 gene in prostate 
cancer [26]. GA promotes apoptosis by regulating AKT/FOXO/
BIM signaling pathway by increasing the expression of miR-21 
in multiple myelomas [27]. In lung cancer (NSCLC), inhibition of 
bcl-2 and PI3K via the notch signaling pathway was induced by 
GA [28] Similarly, GA was found to target various types of cancer, 
including SRC-3 (steroid receptor coactivator-3) and hERG in 
leukemia [29], DDIT3, GADD45B, DUSP5, TOP2B, TOP2A, 
DUSP1, ALDOA and TOP3A in pancreatic cancer [30] and BRD4 
in anaplastic thyroid cancer [31]. GA inhibits AKT/mTOR complex 
1 (mTORC1) by upregulating (AMP-activated protein kinase) 
AMPK and LRIG1 (leucine-rich repeats and immunoglobulin-
like domains 1) via enhancing epidermal growth factor receptor 
(EGFR) in glioma cells [32]. Interestingly, GA also activates T 
lymphocytes in H22 transplanted mice to cell apoptosis [33].

Figure3: Schematic representation of apoptosis signaling pathway 
induced by GA.
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Table 1: Apoptotic cell death mechanisms.

Apoptosis
Mitochondria Dependent

(Intrinsic pathway)
Mitochondria Independent

(Extrinsic pathway)

•	 Reduces bcl-2 mediated release of cyt- c, directly 
targeting the mitochondria with rapid depolarization 
of mitochondrial membrane potential causing release 
of cyt- c and activation of caspase 3 and caspase 9, 
cleaved PARP, and increased ratio of Bax/Bcl-2.

•	 Induce ROS induced collapse of mitochondrial 
membrane potential which downregulated the SIRT1, 
enhanced the phosphorylation of c-Jun-n- terminal 
protein (JNK) and p38.

[16]

[21]       

•	 Enhances death receptor i.e Fas, FasL, FADD, and 
Apaf 1 facilitates DNA fragmentation, binds to 
transferrin receptors that might induce a special 
signal resulting in rapid Apoptosis.

•	 Inhibits STAT3 phosphorylation through the 
activation of SHP-1.

•	 Inhibit MAPK pathway PTEN -/-/ p53.
•	 Enhance miR-21 through AKT/FOXO1/BIM.
•	 Suppress notch-signaling induce Apoptosis.
•	 Inhibit the growth of osteosarcoma.

[22]

[34]

[26]

[27]

[28]

[11]

Autophagy

Autophagy is a self-sustained mechanism of cells that is 
now being contemplated to treat diverse ailments like cancer, 
cardiovascular, and neurodegeneration. The majority of proteins 
including VPS34 (vesicular protein sorting 34), Beclin-1, LC3 
(microtubule-associated protein chain 3) and Atg5 (autophagy-
cognate genes), have been identified to regulate the autophagy 
process. Both, in-vivo as well as in-vitro studies apparently, suggested 
that the xanthone component of GA targets a variety of autophagy 
proteins by increasing the initiation factor for autophagosome 
formation (Beclin-1) to convert LC3 I to autophagosome marker 
(LC3 II) in non-small cell lung cancer NCI-441 cells [35]. GA 
also enhances autophagic vacuole formation and upregulation 
of Beclin 1, Atg5 and LC3-II in Glioblastoma (U251MG and 

U87MG) cells [36], GA was involved in the modulation of ROS 
induced autophagy and apoptotic protein expression including, 
Hsp90, Beclin-1, p62 and GRP-78 in bladder cancer cells (T24 
and UMUC3) [37]. Similarly, GA could act as initiator of ROS 
dependent autophagy via resetting lipid metabolism and Akt-
mTOR signaling in colorectal cells [38]. Foggetti et al. concluded 
that GA not only increases the expression levels of Beclin-1 and 
LC3 (autophagy-associated protein markers) but concomitantly 
promotes reduction of BCR-ABL, SQSTM1/ sequestosome-1 
anti-apoptotic gene product [39]. GA was reported to increase the 
sensitivity of esophageal cancer cell lines towards radiotherapy to 
inhibit Akt/mTOR signal transduction by promoting increment in 
the expression of LC3 and caspase 3,8,9 resulting in autophagy 
induced apoptosis [40].
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Figure 4: Schematic representation of Gambogic mediated autophagy.

Paraptosis

Paraptosis is the mechanism of vacuolization-associated cell death. GA induces paraptosis in cancer cells by forming mega-
mitochondria, which is characterized by the fusion of swollen mitochondria with endoplasmic reticulum derived vacuoles. The inhibition 
of proteasomal system by GA contributes to the dilation of ER and induces ER stress and mitochondrial membrane depolarization 
leading to the formation of mega-mitochondria in treated cancer cells. It was found that thiol-containing antioxidants blocked paraptosis, 
independent of ROS generation. Michael adducts may be formed by the reaction of GA with cysteinyl thiols exposing the potential of 
GA to covalently modify proteins causing protein misfolding and deposition of misfolded proteins within ER and mitochondria [41].

Ferroptosis

Ferroptosis is a regulated form of necrosis dependent upon iron. An aberrant elevation of Fe-dependent lipid peroxidation and 
oxidation of PUFA (polyunsaturated fatty acid), release of free radicals cause disturbance in homeostasis pushes the cells towards 
ferroptosis [42]. Accumulation of ROS in the cell leads to apoptotic cell death mechanism but the uncertain underlying mechanisms alter 
the tumor microenvironment ultimately enhancing the sensitivity of cells towards ferroptosis [43]. GA induced ferroptosis in HCT116 
colon cancer cells was observed [44]. GA directly inhibits the expression of HSP90, a pleiotropic regulator of multiple signalling 
pathways, and increases the GSH depletion leading to an increased level of LPOs and ultimately the cell undergoes ferroptosis.



Citation: Dangi K, Niveria K, Singh IK, Verma AK (2023) Unravelling the Therapeutic Potential of Gambogic Acid: Deciphering Its Molecular 
Mechanism of Action and Emerging Role as an Anticancer Xanthone. Curr Res Cmpl Alt Med 7: 183. DOI: 10.29011/2577-2201.100083

7 Volume 07; Issue 02

Curr Res Complement Altern Med, an open access journal

ISSN: 2577-2201

Figure 4: Schematic representation of Ferroptosis induced by the 
GA resulting in elevation of ROS generation and increased lipid 
peroxidation.

In regulation of Cell invasion and metastasis

Unregulated cell proliferation, tumour cell invasion and 
metastasis are the result of elemental aberration. In human prostate 
cancer cells (PC3 cells), GA suppressed cell proliferation, invasion 
and metastasis by regulating the action of TNF-ƛ by inactivating 
the PI3K/Akt and NF-kB signaling pathway. This resulted in the 
reduced expression of MMP-2 and MMP-9 [45]. Moreover, Zhou 
demonstrated that GA inhibited the proliferation, dispersion, 
invasion and migration of human colon cancer cells (SW620) in 
a dose dependent manner, through the PI3K/AKT/P21/MMP-
2/9-dependent pathway as confirmed by the altered expression 
of levels of PI3K, AKT, phosphorylated-AKT, p21 and MMP-
2 and MMP -9 [46]. Similarly, GA repressed the invasion and 
migration of transforming growth factor β1 (TG0F β1) induced 
EMT (epithelial -to mesenchymal transitions) in A549 cells (lung 
cancer cells) by impeding the NF-kB pathway. In addition, this 
study concluded that GA further inhibited the primary lesions and 
subsequent lung metastasis in in vivo orthotopic mice model [47]. 
Literature survey suggests the involvement of GA in regulating 
multiple signalling pathways that include PI3K/Akt, caspase-3 
apoptosis and TNF-α/NF-κB to inhibit proliferation and migration 
in HT-29 cancer cells. Collectively, GA regimens also decreased 
the miR-21 expression and blocked PI3K/Akt signaling pathway 
by enhancing PTEN activity [48]. Simultaneously, GA inhibited 
the PTEN-PI3K-AKT-mTOR pathway in oesophageal squamous 
cell carcinoma [49]. In gastric cancer cells (AGS and HGC-27 

cells), GA inhibited the proliferation, migration and invasion by 
downregulating the expression of ASAP2 and CDK7 [50].

For exploiting the Tumor microenvironment

Altered tumour microenvironment leads to increased blood 
circulation within the tumour undergoing intense proliferation. 
Angiogenesis is a critical characteristic of cancer cells that plays 
a vital role in proliferation and tumorigenesis. Tumor progression 
is majorly regulated by Hypoxia-inducible factor-1α (HIF-1α). 
in-vivo studies have suggested that GA inhibits HIF-1α/VEGF 
to inhibit angiogenesis and reduced the progression of multiple 
myeloma [51]. GA also acts as an inhibitor of (VHL) propyl 
hydroxylase-2 (PHD2)- von Hippel-Lindau gene by suppressing 
angiogenesis[52]. GA was reported to shrink the blood vessels and 
reduced the density of vessels in rat microvascular endothelial cells 
(rBMEC) as evident by CD31-associated immuno-histological 
studies[53]. GA further suppresses vascular endothelial growth 
factor (VEGF) and inhibits the formation of tubes in (HUVECs) 
and aortic ring generation in the rat[54]. 

Combating drug resistance

Drug resistance is an established phenomena occuring 
in a variety of diseases including cancer. Several cancers are 
initially susceptible to chemotherapy but over time resistance 
develops through a multitude of mechanisms including DNA 
mutation, metabolic alterations, redox-resetting in the tumour 
microenvironment that can lead to drug inactivation, drug target 
alteration, drug efflux, DNA damage repair, cell death inhibition, 
or impact the epithelial-mesenchymal transition (EMT). GA 
has been suggested to reverse resistance to oxaliplatin in LoVo 
colorectal cancer cells by accumulating intracellular platinum 
levels in hCTR1 and reduce the expression of ATP7A and ATP7B 
receptors that are responsible for efflux of cisplatin from the 
cells[55]. Moreover, GA inhibits (ERK)/E2F pathway accompanied 
to reduce mRNA expression and the (RRM2) ribonucleotide 
reductase subunit- M2 protein and to diminish the resistance to 
gemcitabine [56]. Hypoxia-inducible factor (HIF)-1 is crucial 
in promoting resistance to anticancer therapy, istead GA has 
been reported to reverse hypoxia-induced resistance to cisplatin-
mediated apoptosis independent of HIF-1α in osteosarcoma cells 
[57]. In a recent study, GA remarkably facilitates the activation of 
p38 MAPK pathway and ROS-mediated sensitization of cells in 
doxorubicin (DOX)-resistant breast cancer cells by inhibiting the 
P-glycoprotein pathway via suppression of  survivin expression 
[58]. In gastric cancer cell lines (BGC-823/Doc), GA was found to 
downregulate the expression of survivin resulting in the reversal 
of docetaxel resistance [59]. Combinatorial treatment of gefitinib 
and GA inhibited gefitinib resistance due to EGFR T790M mutant 
lung cancer [52].
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Repurposing and optimizing GA as combinatorial therapy 

GA has been exploited for combinatorial therapy as it 
exhibits chemo-sensitization in multiple cancers by modulating 
a variety of biochemical signaling pathways such as, PI3K/AKT, 
MAPK/ERK and NF-kB. Co-treatment of GA aids in reducing 
cytotoxicity as well as enhanced  intracellular concentration 
of chemotherapeutic drugs.  Synergistic effects of GA were 
observed with many chemotherapeutic drugs including cisplatin, 
gemcitabine, docetaxel doxorubicin, irinotecan, paclitaxel, and 
cabazitaxel and with biologics mainly sunitinib, gefitinib, and 
imatinib. As reported,  treatment with  oxaliplatin at 1, 2, and 4µM 
concentration exhibited platinum levels of ~0.25, 0.45, and 0.48 
ng/107 cells, while co-treatment with GA reduced  the oxaliplatin 
concentration almost 4-folds and the platinum levels increased to 
0.45, 0.8, and 1.6ng/107 cells in a time-dependent manner [60-66]. 
When GA was used in combination with cisplatin, it showed higher 
anticancer activity by downregulation of LRP and MRP2 proteins, 
thereby promoting cell cycle arrest and increased apoptosis in 
cisplatin-resistant (A549/DDP) lung cancer cells [67]. GA when 
combined with cisplatin and rapamycin induced autophagy which 
ultimately suppressed the Akt/mTOR signaling probably by 
synergistic effect. Further,  chloroquine co-administration leads to 
decreased expression of p62 in colon cancer cells and pancreatic 
cancer cells, but upregulate  the expression of Beclin-1 and LC3-II 
proteins [61]. Interestingly, chloroquine plus GA synergistically 
reduce the tumor burden. Moreover, in-vivo studies indicated 

delivery of GA at a dose of 1mg/kg) plus Doxorubicin (DOX) (10 
mg/kg) significantly reduced the tumor progression significantly 
(~225 mm3) when compared to  DOX or GA alone in a SKOV-3 
xenograft mice model. Surprisingly, there were negligible adverse 
effects observed in tumor bearuing mice [68]. GA along with PTX 
exhibited  upregulation of the sonic hedgehog signaling pathway 
by inhibiting the expression of SHH, GLI1, and PTCH1 than PTX 
alone [66]. Synergistic effect of GA and Geftinib in HCI-H1975 
NSCLC xenograft mice model revealed a remarkable inhibition 
of ~70% tumor growth by suppressing p-MEK1, p-ERK1/2, and 
p-Akt /2 than treatment of GA and Gefitinib alone [52]. Similarly, 
GA with Gemicitabine (GEM) showed reduction in tumor burden 
by 72.9% to 49.8% and 30.2% upon treatment with GEM and 
GA per se. This study concluded that GA inhibited RRM2 by 
suppressing the E2F1/ERK/MAPK signaling in cancer cells of 
pancreas BxPC-3 and PANC-1 [56]. GA further triggers RRM2 
to upregulate GEM-induced apoptosis in lung cancer [10]. Apart 
from chemo-sensitization, GA was found to be effective in radio-
sensitization treatments as well. GA efficiently inhibits (A549/
DDP) cell proliferation in cisplatin-resistant non-small cell lung 
cancer cells in combination with  131NaI radio-sensitizer [67]. 
GA along with X-ray irradiation ( 2-8 Gy) promotes apoptosis in 
nasopharyngeal cancer cells by G2/M-phase arrest and cyclinB1/ 
HIF-1α /cdc2 pathway [69]. Further, the esophageal cancer cell 
line- TE13 was sensitized by radiowaves and GA it indicated ROS 
mediated autophagy and programmed cell death by apoptosis via 
inhibition of Akt/mTOR pathways [40].
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Figure 5: Diagrammatical illustration of review concept showing GA in combination with chemotherapeutic drugs (carboplatin and 
other) resulting in improved therapeutic benefits in cancer treatment.

Probable neo-targets

Effects of GA on microRNA 

MicroRNA is a single stranded non-coding RNA molecules 
participates in post-transcriptional regulation of gene expression. 
To date, over 2500 miRNAs have been recognized as cancer 
biomarkers specifically related to onset and progression of 
tumors. Reports suggested that in cervical cancer, GA suppressed 
epithelial-mesenchymal transition, migration and drug resistance 
by communicating with miRNA. The Neo-GA contributed in 
inhibiting the expression of miRNA 106b and miRNA93 in Hela 
cells, enhanced the sensitivity against cisplatin and downregulated 
the expression of N-cadherin, Snail and Vimentin [70]. Li et al 
reported that GA treatment enhanced the expression of BCRC4 and 
miR-101, that leads to the suppresssion of EZH2 expression level 
in T24T and UMUC3 cells (Bladder cancer) in a dose dependent  
manner [71]. Similarly, repressive effect of GA on gastric cancer 
was faciliated by the elevation of miR-26a-5p and downregulation 
of Wnt5a [72]. Collectively, GA inhibits cancer metastasis and 
invasion by corrdinating and regulating the expression of miRNAs.  
Hence, emerging evidences support that GA has the potential  to 
suppress cell proliferation and progression by attaching to the 

miRNA sites. However, the molecular mechanisms showing their 
inhibitory effects still remain unexplored.

Discussions

Cancer still remains the most lethal form of disease that 
persistently affects the health of humans. This puts a tremendous 
urgency to develop therapies for cancer prevention and high 
through-put preparedness for advanced management. The paradox 
of conventional therapy that includes surgery, chemotherapy and 
radiotherapy are well known. Their success have been severely 
hampered owing to adverse side effects, drug resistance and 
subsequent recurrence leads to treatment failure. Drug resistance 
is primarily influenced by alteration in drug efflux transporters, 
impaired metabolism, inactivation and modification in targets 
and sequestering of drug via different channels. To overcome 
these limitations, several clinical investigation and laboratory 
research have been directed to scrutinize the efficacy of natural 
phytochemicals in cancer management. The broad-spectrum 
chemotherapeutic efficacy is the reason for the wide range of 
mechanisms of action by GA that is indicative of its remarkable 
potency. The activity- structure relationships unravelled the 
ease of modification of GA molecule without compromising its 
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pharmacological and biological activities. The potent anti-cancer 
property has been substantiated by the multiple death mechanisms 
induced by GA such as apoptosis, ferroptosis, and autophagy. This 
potency may further be due to enhanced reactive oxygen species 
(ROS), excess anti-proliferation, down regulation of key enzymes 
(e.g., telomerase), reduced secretion of growth factors such as 
vascular endothelial growth factor (VEGF) and intervention of 
nuclear factor kappa-light-chain-enhancer of activated B cells 
(NF-κB) signalling pathways. GA was identified after a high-
throughput screening of natural molecules/compound libraries 
having a potential for inhibition of heat shock protein 90 (Hsp90) 
[73]. Hsp90 is reported to have a binding site for GA that is a 
different site than Adenosine triphosphate (ATP) binding pocket. 
Additionally, Yang lj et al. have suggested that normal cells exhibit 

low GA sensitivity when compared to cancer cells, presumably 
due to change in the redox equilibrium [74]. Moreover, literature 
survey suggests that GA has been used for sensitization prior to 
chemotherapy/radiation in different types of cancers [56,58,66,68] 
to improve the therapeutic index. GA may be exploited as 
modulators of drug resistance, as they can downregulate or inhibit 
drug efflux in cancer cells through the P-glycoprotein (P-gp) pump. 
Inhibition of Pgp pump possibly enhances the concentrations of 
drugs inside the cells [75]. Wang et al. reported a phase I clinical 
trial on humans maximal tolerated dose (MTD) of a single injection 
was 55mg/m2   and dose limiting toxicities (DLTs) were mainly 
concerned on liver dysfunction and pain [74]. Recently, GA has 
been approved in phase II trial in human metastatic breast cancer 
up to the promising dose of 45mg/m2 [9].

Figure 6: Pictorial representation of various signaling pathways including Autophagy and Apoptosis associated with GA.
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Conclusion

Past few decades have witnessed a resurgence in use of 
phytochemicals to combat various cancers. GA is a promising 
novel anti-cancer phytochemical with innumerable targets to treat 
several cancers efficiently. The biological activity of GA includes 
its anti-inflammatory, anti-oxidant and anti-microbial efficacy. 
The complex structure of GA may restrict its absorption in the 
intestinal tract to enter the blood circulation. Therefore, prodrug 
strategies and special drug delivery systems may provide unique 
methods for the clinical application of GA and its derivatives. In 
addition, the modulation of oncotargets by GA to attain synergistic 
effects along with chemotherapeutic agents and radiation therapies 
would be an attractive strategy.

GA contributes in inhibition of cancer cell proliferation, 
invasion, metastasis, angiogenesis and chemoresistance as well 
as induction of apoptosis, autophagy, ferroptosis, paraptosis, cell 
cycle arrest has been demonstrated in in vitro and in vivo study. 
This review provides a systematic elucidation of the current 
understanding of GA in terms of its chemical and biological 
activities that include anti-cancer activities, underlying molecular 
mechanisms and impact of GA in overcoming drug resistance. 
Therefore, GA has the ability to decrease the number of cancer-
associated mortality and increased patient compliance with 
prolonged life span. Undoubtedly, GA is considered to be a miracle 
compound owing to its unique pharmacological activities. 

Future Perspectives

The futuristic studies should be focused on comprehensive 
view on mechanistic approach into numerous unexplored 
bioactivities, its entire pharmacokinetic and pharmacodynamics 
assessment to determine ADME patterns. The deep knowledge 
should be considered on biochemical targets and action of 
mechanisms of GA using QSAR techniques. It is critical to 
evaluate the biochemical and molecular targets to exploit the 
potential of GA. Detailed investigations are absolutely necessary 
to understand the concerns related to the isolation, biosynthesis 
of GA and other simplified xanthone moieties from plant cells, 
illustrating their physiological and endogenic role in plants 
and endogenous role in plants and the variation in content with 
environmental factors. A comprehensive analysis of GA structure 
and its simplified xanthone moieties requires aggressive research 
to elucidate the novel therapeutic derivatives to achieve therapeutic 
efficacy. The poor aqueous solubility, poor biodistribution, and 
multi-targeting capacity can introduce unavoidable systemic 
toxicity issues. To minimize such un-invited side effects and 
enhance its clinical translation, nanotechnology approaches can 
be helpful. Unravelling the potential therapeutic efficacy of GA 
necessitates in-depth pharmaceutical research to garner deep 
knowledge of its biodistribution and toxicological effects for both 

chemo-sensitization and synergistic actions. Experimental data as 
well as prognostic computational studies, done so far augment an 
opportunity that GA could be employed into a multi-functional 
drug.
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